Chemistry, asked by vanshikakatria, 9 months ago

O2 is present in one litre flask at a pressure of 7.6  10−10

mm of Hg.

Calculate no. of O2 molecule​

Answers

Answered by yashchauhan010906
0

Explanation:

Using ideal gas equation,

Using ideal gas equation,n=

Using ideal gas equation,n= RT

Using ideal gas equation,n= RTPV

Using ideal gas equation,n= RTPV

Using ideal gas equation,n= RTPV ....(i)

Using ideal gas equation,n= RTPV ....(i)P=

Using ideal gas equation,n= RTPV ....(i)P= 760

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atm

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n=

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×273

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 =

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×273

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310 −12

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310 −12

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310 −12

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310 −12 ×6.023×10

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310 −12 ×6.023×10 23

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310 −12 ×6.023×10 23

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310 −12 ×6.023×10 23 =2.68×10

Using ideal gas equation,n= RTPV ....(i)P= 7607.6×10 −10 =10 −12 atmV=1 L,T=273 K,R=0.0821 L atm K −1 mol −1 From eq. (i) n= 0.0821×27310 −12 ×1 Number of molecules =n×6.023×10 23 = 0.0821×27310 −12 ×6.023×10 23 =2.68×10 10

Answered by ullasgowda33
1

Answer:

2.66 x 10 10 is the answer

Explanation:

hope it helps you sis

Similar questions