Physics, asked by devendraKumar8032, 11 months ago

object replaced from 3(i)^ +2(j)^ to 14(j)^ +13(i)^ by a force 4(i)^ + (j)^ . Calculate work done by force

Answers

Answered by Anonymous
6

\huge\underline\blue{\sf Answer:}

\red{\boxed{\sf Work\:done\:by\:force≈140J }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • \sf{r_1=3\hat{i}+2\hat{j}}

  • \sf{r_2=14\hat{j}+13\hat{i}}

  • \sf{Force(F)=4\hat{i}+\hat{j}}

\large\underline\pink{\sf To\:Find: }

  • Work done (W) = ?

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large{\boxed{\sf r=r_2-r_1}}

\large\implies{\sf r=13\hat{i}+14\hat{j}-3\hat{i}+2\hat{j} }

\large\implies{\sf r=10\hat{i}+12\hat{j}}

Work (W) = Force ×Distance

\large\implies{\sf (4\hat{i}+\hat{j})-(10\hat{i}+12\hat{j})}

\large\implies{\sf 140\hat{i}+12\hat{j}}

\large\implies{\sf \sqrt{(140)^2+(12)^2}}

\large\implies{\sf \sqrt{19744}}

\large\implies{\sf ≈140J}

\red{\boxed{\sf Work\:done\:by\:force≈140J }}

Similar questions