Math, asked by omsanghvi9, 9 months ago

obtain a quadratic polynomial if sum of zeroes =-3 ;. and product of zeroes = -4​

Answers

Answered by Cosmique
23

Question:

Obtain a quadratic polynomial if sum of zeroes is -3 and product of zeroes is -4.

Solution:

Let,

we have to obtain a polynomial

ax^2 + bx + c

then,

as given

-3 = sum of zeroes

-3 = -b/a

-(3) /1 = -(b) /a

and

-4 = product of zeroes

-4 = c/a

(-4) /1 = (c) /a

On comparison we will get

a = 1 ; b = 3 ; c = -4

Hence,

our quadratic polynomial will be

ax^2 + bx + c

(1) x^2 + (3) x + (-4)

therefore,

x^2 + 3x - 4

is the required polynomial.

Answered by Anonymous
11

❏ SolutioN :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\blacksquare\:\:\footnotesize{\underline{\underline{Given}}}

\footnotesize{product\: of \:zeroes = -4}

\footnotesize{sum\: of \:zeroes = -3}

\blacksquare\:\:\footnotesize{\underline{\underline{To\: Find}}}

\footnotesize{find \:the\: quadratic\: equation}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\footnotesize{\text{we know that for a quadratic equation }if\: \alpha\: and\: \beta}

\footnotesize{ \text{are the zeroes of the equation then the quadratic equation is :}}

\longrightarrow\footnotesize{ x^2-(\alpha+\beta)x+\alpha\beta=0}

\footnotesize{\alpha+\beta=-3 \:and\: \alpha\beta = -4 }

\therefore\footnotesize{Quadratic \: polynomial\:is \:,}

\footnotesize{=x^2-(-3)x+(-4)}

\footnotesize{\boxed{=x^2+3x-4}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions