obtain a quadratic polynomial whose zeros are 2alpha+beta and alpha+2beta where alpha and beta are the zeros of x2−3x−8
Attachments:
Answers
Answered by
23
Hey,
Here is Your Answer,
_____________________________________________________________
First You Need to Find the sum of zeroes and product of zeroes of given Ploynomial:- (x²+3x-10)
Sum of Zeroes = -b/a
α+β= -(3/1)
α+β= -3 .................................................(i)
Product of Zeroes = c/a
αβ = -10
Now You Find the Sum and Product of Zeroes by Given zeroes :-
1) 2α+β
2) α+2β
Sum of Zeroes
2α+β+α+2β = 3α+3β
3(α+β)
3(-3) ..........................[using (i)]
-9
Product of Zeroes
(2α+β)(α+2β)
2α(α+2β)+β(α+2β)
2α²+4αβ+αβ+2β²
2(α²+β²)+5αβ
2[(α+β)²-2αβ]+5αβ .......................[ α²+β²=(α+β)²-2αβ]
2(α+β)²-4αβ+5αβ
2(α+β)²+αβ
2(-3)²-10 .................................................. [using (i) & (ii) ]
2(9)-10
18-10
8
Now Find the New Quadratic Polynomial
x²-(sum of zeroes)x+(product of zeroes)
x²-(-9)x+8
x²+9x+8 is the Required polynomial
____________________________________________________________
(I HOPE IT HELPS YOU)
MARK AS A BRILLIANT
Here is Your Answer,
_____________________________________________________________
First You Need to Find the sum of zeroes and product of zeroes of given Ploynomial:- (x²+3x-10)
Sum of Zeroes = -b/a
α+β= -(3/1)
α+β= -3 .................................................(i)
Product of Zeroes = c/a
αβ = -10
Now You Find the Sum and Product of Zeroes by Given zeroes :-
1) 2α+β
2) α+2β
Sum of Zeroes
2α+β+α+2β = 3α+3β
3(α+β)
3(-3) ..........................[using (i)]
-9
Product of Zeroes
(2α+β)(α+2β)
2α(α+2β)+β(α+2β)
2α²+4αβ+αβ+2β²
2(α²+β²)+5αβ
2[(α+β)²-2αβ]+5αβ .......................[ α²+β²=(α+β)²-2αβ]
2(α+β)²-4αβ+5αβ
2(α+β)²+αβ
2(-3)²-10 .................................................. [using (i) & (ii) ]
2(9)-10
18-10
8
Now Find the New Quadratic Polynomial
x²-(sum of zeroes)x+(product of zeroes)
x²-(-9)x+8
x²+9x+8 is the Required polynomial
____________________________________________________________
(I HOPE IT HELPS YOU)
MARK AS A BRILLIANT
Similar questions