obtain all the zeroes of the polynomial p(x)=x⁴+4x³-7x²-22x+24 if two of its zeroes are 1 and 2
Answers
Answer:
two zeros of p ( x ) = 1 , 2
= (x - 1) (x - 2)
= x² - 2x -x +2
= x² - 3x +2 = g(x)
now divide p(x) with g(x) ,
x² - 3x +2 ) x^4 +4x³ - 7x² - 22x +24 ( x² +7x +12
x^4 - 3x³ +2x²
(-)___(+)__(-)___________
0 + 7x³ - 9x² - 22x +24
7x³ - 21x²+14x
(-)__(+)___(-)_______
0 + 12x² - 36x +24
+ 12x² - 36x +24
(-)____(+)___(-)____
{ 0 }
now take q(x) , = x² +7x +12
spliting of middle terms,
= x² +3x + 4x +12
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
x = - 3 , - 4
therefore, the other two zeros are -3 ,-4