Math, asked by alakkn, 1 year ago

obtain all zeroes of 3x4-15x3+13x2+25x-30 if two zeroes are root5/3 and root -5/3

Answers

Answered by Anonymous
281
Heya dear .

Solution Given here .
----------------------------------------------------

The given Polynomial is
f(x) = (3 {x}^{4} - 15 {x}^{3} + 13 {x}^{2} + 25x - 30).
since \sqrt{ \frac{5}{3} } \: \: and \: \: - \sqrt{ \frac{5}{3} }
are the zeros of f (x) , it follows that each one of
(x- √5/3 ) and (x + √5/3) is a factor of f(x).

(x - \sqrt{ \frac{5}{3} } )(x + \sqrt{ \frac{5}{3} }) = ( {x}^{2} - \frac{5}{3} ) = \frac{(3 {x}^{2} - 5) }{3} \\ is \: \: a \: \: factor \: \: of \: f(x)
consequently , ( 3x^2 - 5) is a factor of f (x)

on dividing f(x) by (3x^2 - 5) , we get
_______________________________

【SEE in the above attachment 】
______________________________

 = > f(x) = 3 {x}^{4} - 15 {x}^{3} + 13 {x}^{2} + 25x - 30 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = ( 3 {x}^{2} - 5)( {x}^{2} - 5x + 6) \\ \: \ = ( \sqrt{3}x + \sqrt{5} )( \sqrt{3} x - \sqrt{5} )(x - 2)(x - 3). \\ \\ = > f(x) = 0 \\ = > ( \sqrt{3} x + \sqrt{5}) = 0 \: \: \: or \: ( \sqrt{3} x - \sqrt{5} ) = 0 \\ or \: (x - 2) = 0 \: \: or \: \: (x - 3) =0 \\ \\ \\ = > x = - \sqrt{ \frac{5}{3} } \: \: or \: x = \sqrt{ \frac{5}{ 3} } \: \: or \: x = 2 \: \: or \: x = 3. \\ \\ hence \: \: all \: zeros \: \: of \: f(x) \: \: are \: \\ \sqrt{ \frac{5}{3} } \: \: or \: - \sqrt{ \frac{5}{3} } \: \: or \: \: 2 \: \: and \: \: 3
______________________________

Hope it's helps you.
☺☺✌✌
Attachments:
Answered by vaidik04
120

hi mate

other two zeroes are 2 and 3

Step-by-step explanation:

for step by step explaination refer the attachment above.

PLEASE MARK MY ANSWER AS BRAINLIEST ANSWER

Attachments:
Similar questions