Physics, asked by Kumari111020, 1 year ago

obtain expression for reflection and transmission amplitude coefficients when electric vector associated with a plane monochromatic electromagnetic wave is in the plane of incidence.

Answers

Answered by kvnmurty
33

A quick solution (assuming we know the symbols):


  Ai = - Ar + At   boundary condition related to phase angles & displacement
  Z
₁ Ai² = Z₁ Ar²  + Z₂ At²    from Energy/sec. Conservation
      or  k
₁ Ai² = k₁ Ar² + k₂ At²

Solving them we get
          Ar/Ai = (k
₁ - k₂)/(k₁+k₂)   and    At / Ai = 2 k₁ / (k₁+k₂)
   or,       Ar/Ai = (Z
₁ - Z₂)/(Z₁+Z₂)   and    At / Ai = 2 Z₁/ (Z₁+Z₂)
   or,       Ar/Ai = (v
₂ - v₁)/(v₁+v₂)   and    At / Ai = 2 v₂ / (v₁+v₂)

This is the same formula for all Transverse waves,  mechanical (on a string), light and electromagnetic waves too.
===============================
Detailed derivation:


Transverse waves oscillate in (y) perpendicular to the direction (positive x) of propagation.  X-axis is along the string.  Let F be the tension force in the string at any x.

     y(x, t) = Ai  Sin (ω t – k
x)    with an initial phase of  0,  at  t = x = 0
             ω = angular freq.  Wavelength = λ
₁, wave number = k₁ = 2π/λ₁ ,

            T = time period
             velocity in x direction = v
₁ = λ₁/T        k₁ = ω/v₁

let μ₁ = mass per unit length of the string.   We can derive that :  v₁ = √(F/ μ₁)
So  F = μ
₁ v₁² = v₁ Z₁,  where Characteristic impedance of the string = Z₁ = μ₁ * v₁

      k
₁ is the wave number specific to the string and it may depend on the impedance of the string, mass per unit length and temperature.   Suppose the wave encounters a heavier string of higher wave number k₂, and impedance Z₂, then most of the energy in the wave is reflected.  A little is transmitted.   The reflected wave has a phase difference of π with the incident wave.  The transmitted wave has the same  phase as the incident wave.   Frequency of the wave remains same in both strings.

   Let  k
₂, λ₂, v₂, Z₂  be the wave number, wavelength, velocity and characteristic impedance of the wave on the second string.   Let both strings meet at  x = L  and at   t = t₁.
                 So   v
₂ = √(F/ μ₂)         and     F = μ₂ v₂² = v₂  Z₂
                 Since, F = v
₁ * Z₁ = v₂ *Z₂,   we get   v₁ / v₂ = Z₂/Z₁ = k₂/k₁
 
      Yr (x, t) = Ar  Sin (ω (t-t
₁) - k₁ (L- x) + θ)   where Ar = amplitude of reflected wave.
             As the phase difference with Yi(x,t) is  π at x =L and t= t
,  we get:
                ω (t-t
₁) - k₁(L-x) + θ = ω t₁ - k₁ L - π       =>    θ = ω t₁ - k₁ L – π
         =>       Yr(x,t) = Ar Sin [ω t - k
₁(L- x) + k₁ L - π]

        Yt (x, t) = At  Sin [ω (t-t
₁) - k₂ (x-L) + Ф)  , where At = amplitude of transmitted wave
           as phase angle is same as Yi(x,t) at  x = L and t = t
, we get
              ω (t-t
₁) - k₂ (x-L) + Ф = ω t – k₁ x     => Ф = (k₂ – k₁) L
           =>  Yt(x, t) = At Sin [[ω t - k
₂ x + (k₂  - k₁) L]

Boundary conditions :

1) Displacement of the initial wave is the algebraic sum of the other two displacements at the boundary of the two strings.  It is like vector or phasor addition.  Let δ be the phase angle of incident wave at the boundary.
       Ai Sin δ  =  Ar Sin (δ - π) + At Sin δ
                   Ai   = At – Ar       =>  Ai + Ar = At   --- (1)

2)   The energy incident at the boundary (per unit time) is split into two components: reflected and transmitted.  Using the conservation of energy principle, we get:

                1/2  μ1 v1 ω^2  Ar^2 + 1/2 μ2 v2 ω^2 At^2 =  1/2  μ1 v1 ω^2  Ai^2 

                   =>    Z1 (Ai^2 – Ar^2) = Z2  At^2
                   =>   Z1 (Ai - Ar ) = Z2 At      --- (2)

Solving (1) and (2) we get:
               Ar = (Z1 – Z2) Ai  / (Z
₁ + Z₂)      And     At = 2 Z₁ Ai /(Z₁ + Z₂ )
        Or,    Ar = (k
₁ – k₂) Ai / (k₁ + k₂)     and     At = 2 k₁ Ai /(k₁ + k₂)
       Or      Ar = (v
₂ – v₁) Ai / (v₁ + v₂)     and      At = 2 v₂ Ai /(v₁ + v₂)


kvnmurty: click on red hearts thanks button above pls
Kumari111020: Ya sure
kvnmurty: which class are u in? this qn is for 12th class or for degree ..
Kumari111020: Im in part 2
Kumari111020: Can u help me in another questions
Similar questions