Physics, asked by vaishnavidahake, 1 year ago

obtain the direction cosines of vector a-b if a=2i+3j+k b=2i+2j+3k. ................don't spam please ​

Answers

Answered by hrishyak777333
12

Answer:

a - b = j - 2k

so, |a-b| = √(1+4) =√5

direction cosines ,

l = 0/√5=0

m= 1/√5

n = -2/√5

hence the direction cosines are 0 , 1/√5 , (-2)/√5.

hope this may help you ❤️❤️❤️

with my love ❤️

Answered by syed2020ashaels
1

As per the data given in the above question.

We have to find the direction cosine of A-B

Given,

A=2 \hat i+3 \hat j+\hat k

B=2 \hat i+2 \hat j+3 \hat k

Explanation:

Let \:  \hat c  \: be \:  \hat A-\hat B

 \hat c \:  =  \hat A-\hat B

\hat c= (2 \hat i+3 \hat j+\hat k)-(2 \hat i+2 \hat j+3 \hat k)

\hat c= (2 \hat i+3 \hat j+\hat k-2 \hat i - 2 \hat j - 3 \hat k)

\hat c= 0  \hat i  +  \hat j - 2\hat k

Direction ratios are

a=0 ,b= 1  \: and  \: c= -2

Magnitude ,

|\hat c |  =  \sqrt{ {0}^{2} +  {1}^{2}   +  { - 2}^{2} }

 |\hat c |  =  \sqrt{0 + 1 + 4}

|\hat c |  =  \sqrt{5}

Direction cosines are ,

 \frac{a}{|\hat c |  }  \frac{b}{|\hat c |  } \:  \frac{c}{|\hat c |  }

so ,

 \frac{a}{ \sqrt{5} }  \frac{b}{ \sqrt{5} }  \frac{c}{ \sqrt{5} }

Hence,

Direction  \: cosines  \: are \:  \frac{a}{ \sqrt{5} } , \frac{b}{ \sqrt{5} } , \frac{c}{ \sqrt{5} } </p><p>

Project code #SPJ2

Similar questions