Obtain the Fourier series for e^ -ax from x equals to -ΠtoΠ
Answers
Fourier series for a function f(x) is defined as:
Hence, let us compute now the coefficients of various frequency components:
e^-ax Over [-π, π] : the Fourier series is :
..done.
Step-by-step explanation:
Given signal function in time domain is:
f(x) = e^{-ax}\ \ \ -\pi \le x \le \pif(x)=e
−ax
−π≤x≤π
Fourier series for a function f(x) is defined as:
\begin{gathered}f(x)=\frac{1}{2}a_0\ +\ \Sigma_{n=1}^{\infty}\ a_n\ Sin(nx)\ +\ \Sigma_{n=1}^{\infty}\ b_n\ Sin(nx)\\\\a_0=\frac{1}{\pi} \int\limits^{\pi}_{-\pi} {f(x)} \, dx\\\\a_n=\frac{1}{\pi} \int\limits^{\pi}_{-\pi} {f(x)\ Cos(nx)} \, dx\\\\b_n=\frac{1}{\pi} \int\limits^{\pi}_{-\pi} {f(x)\ Sin(nx)} \, dx\end{gathered}
f(x)=
2
1
a
0
+ Σ
n=1
∞
a
n
Sin(nx) + Σ
n=1
∞
b
n
Sin(nx)
a
0
=
π
1
−π
∫
π
f(x)dx
a
n
=
π
1
−π
∫
π
f(x) Cos(nx)dx
b
n
=
π
1
−π
∫
π
f(x) Sin(nx)dx
Hence, let us compute now the coefficients of various frequency components:
\begin{gathered}a_0=\frac{1}{\pi} \int\limits^{\pi}_{-\pi} {e^{-ax}} \, dx=\frac{1}{\pi a}[ -e^{-ax} ]_{-\pi}^{\pi}=\frac{e^{\pi a}-e^{-\pi a}}{\pi a}\\\end{gathered}
a
0
=
π
1
−π
∫
π
e
−ax
dx=
πa
1
[−e
−ax
]
−π
π
=
πa
e
πa
−e
−πa
\begin{gathered}a_n=\frac{1}{\pi} \int\limits^{\pi}_{-\pi} {e^{-ax}\ Cos(nx)} \, dx\\\\= \frac{1}{n\pi} [ e^{-ax} Sin(nx)]_{-\pi}^{\pi} + \frac{a}{n\pi} \int\limits^{\pi}_{-\pi} {e^{-ax}\ Sin(nx)} \, dx\\\\=0- [ \frac{a}{n^2 \pi}\ e^{-a x}\ Cos(n x) ]_{-\pi}^{\pi} - \frac{a^2}{n^2 \pi} \int\limits^{\pi}_{-\pi} {e^{-ax}\ Cos(nx)} \, dx \\\\=-\frac{a}{n^2 \pi}\ [ e^{-a \pi}- e^{a\pi}] Cos(n\pi)-\frac{a^2}{n^2}\ a_n\\\\a_n=\frac{(-1)^n a\ [ e^{a \pi}- e^{-a\pi}]}{(n^2+a^2)\pi} \\\end{gathered}
a
n
=
π
1
−π
∫
π
e
−ax
Cos(nx)dx
=
nπ
1
[e
−ax
Sin(nx)]
−π
π
+
nπ
a
−π
∫
π
e
−ax
Sin(nx)dx
=0−[
n
2
π
a
e
−ax
Cos(nx)]
−π
π
−
n
2
π
a
2
−π
∫
π
e
−ax
Cos(nx)dx
=−
n
2
π
a
[e
−aπ
−e
aπ
]Cos(nπ)−
n
2
a
2
a
n
a
n
=
(n
2
+a
2
)π
(−1)
n
a [e
aπ
−e
−aπ
]
\begin{gathered}b_n=\frac{1}{\pi} \int\limits^{\pi}_{-\pi} {e^{-ax}\ Sin(nx)} \, dx\\\\= \frac{1}{n\pi} [- e^{-ax} Cos(nx)]_{-\pi}^{\pi} - \frac{a}{n\pi} \int\limits^{\pi}_{-\pi} {e^{-ax}\ Cos(nx)} \, dx\\\\=\frac{(-1)^n(e^{\pi a}-e^{-\pi a})}{n\pi}-\frac{a}{n^2\pi} [ e^{-ax} Sin(nx) ]_{-\pi}^{\pi}\ -\frac{a^2}{n^2\pi} \int\limits^{\pi}_{-\pi} {e^{-ax}\ Sin(nx)} \, dx\\\\b_n=\frac{(-1)^n(e^{\pi a}-e^{-\pi a})}{n\pi}-0-\frac{a^2}{n^2}\ b_n\\\\b_n=\frac{(-1)^n(e^{\pi a}-e^{-\pi a})\ n}{(n^2+a^2)\pi}\end{gathered}
b
n
=
π
1
−π
∫
π
e
−ax
Sin(nx)dx
=
nπ
1
[−e
−ax
Cos(nx)]
−π
π
−
nπ
a
−π
∫
π
e
−ax
Cos(nx)dx
=
nπ
(−1)
n
(e
πa
−e
−πa
)
−
n
2
π
a
[e
−ax
Sin(nx)]
−π
π
−
n
2
π
a
2
−π
∫
π
e
−ax
Sin(nx)dx
b
n
=
nπ
(−1)
n
(e
πa
−e
−πa
)
−0−
n
2
a
2
b
n
b
n
=
(n
2
+a
2
)π
(−1)
n
(e
πa
−e
−πa
) n
e^-ax Over [-π, π] : the Fourier series is :
e^{-ax}= \frac{e^{\pi a}-e^{-\pi a}}{\pi}\ [ \frac{a}{2} + \Sigma_{n=1}^{\infty} \frac{(-1)^n a}{a^2+n^2}\ Cos(nx) + \Sigma_{n=1}^{\infty} \frac{(-1)^n n}{a^2+n^2} \ Sin(nx) ]e
−ax
=
π
e
πa
−e
−πa
[
2
a
+Σ
n=1
∞
a
2
+n
2
(−1)
n
a
Cos(nx)+Σ
n=1
∞
a
2
+n
2
(−1)
n
n
Sin(nx)]
=\frac{e^{\pi a}-e^{-\pi a}}{\pi}\ [ \frac{a}{2} + \Sigma_{n=1}^{\infty} \frac{(-1)^n}{a^2+n^2}\ \{a\ Cos\ nx + n\ Sin\ nx \} ]=
π
e
πa
−e
−πa
[
2
a
+Σ
n=1
∞
a
2
+n
2
(−1)
n
{a Cos nx+n Sin nx}]
..done.