Math, asked by somya252004, 3 months ago

obtain the inverse by using elementary row operation matrix is
9 5
2 7​

Answers

Answered by mathdude500
3

\large\underline{\sf{Basic  \: Concept - }}

Elementary Row Transformation Method :-

  • The elementary transformation method to find the inverse of a matrix.

  • To find the Inverse of a matrix, our goal is to convert the given matrix into an identity matrix.

We can use three transformations:-

  • 1) Multiplying a row by a constant

  • 2) Adding a multiple of another row

  • 3) Swapping two rows

Basically, in elementary transformation of matrices we try to find out the inverse of a given matrix, using two simple properties :

  • 1. A = A × I

where I = Identity matrix

  • 2. A × B =I it implies that B is inverse of A.

\large\underline{\bold{Solution-}}

 \sf \: Let \: A \:  =  \: \begin{bmatrix} 9 & 5\\ 2 & 7\end{bmatrix}

\rm :\longmapsto\:A = IA

\rm :\longmapsto\: \: \begin{bmatrix} 9 & 5\\ 2 & 7\end{bmatrix} =  \: \begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}A

\bf :\longmapsto\:OP \:  R_1 \to \: R_1 - 4R_2

\rm :\longmapsto\: \: \begin{bmatrix} 1 &  - 23\\ 2 & 7\end{bmatrix} =  \: \begin{bmatrix} 1 &  - 4\\ 0 & 1\end{bmatrix}A

\bf :\longmapsto\:OP \:  R_2 \to \: R_2 - 2R_1

\rm :\longmapsto\: \: \begin{bmatrix} 1 &  - 23\\ 0 & 53\end{bmatrix} =  \: \begin{bmatrix} 1 &  - 4\\  - 2 & 9\end{bmatrix}A

 \bf :\longmapsto\:OP \:  R_2 \to \: \dfrac{1}{53} R_2

\rm :\longmapsto\: \: \begin{bmatrix} 1 &  - 23\\ 0 & 1\end{bmatrix} =  \: \begin{bmatrix}  1 &  - 4\\  - \dfrac{2}{53}  & \dfrac{9}{53} \end{bmatrix}A

\bf :\longmapsto\:OP \:  R_1 \to \: R_1  +  23R_2

\rm :\longmapsto\: \: \begin{bmatrix} 1 &  0\\ 0 & 1\end{bmatrix} =  \: \begin{bmatrix}  \dfrac{7}{53}  &  -  \dfrac{5}{53} \\  - \dfrac{2}{53}  & \dfrac{9}{53} \end{bmatrix}A

Hence,

\bf :\longmapsto\: {A}^{ - 1}  = \: \begin{bmatrix}  \dfrac{7}{53}  &  -  \dfrac{5}{53} \\  - \dfrac{2}{53}  & \dfrac{9}{53} \end{bmatrix}

Similar questions