Math, asked by adarshapandu2945, 5 hours ago

Obtain the Partial differential equation by eliminating the arbitary constants a
and b from z = (x2 + a) (y2 + b)

Answers

Answered by hashirahmad178
0

Distribute

(2+)(2+)

{\color{#c92786}{(x^{2}+a)(y^{2}+b)}}(x2+a)(y2+b)

(2+)⋅2+(2+)

{\color{#c92786}{(y^{2}+b) \cdot x^{2}+a(y^{2}+b)}}(y2+b)⋅x2+a(y2+b)

2

Distribute

(2+)⋅2+(2+)

{\color{#c92786}{(y^{2}+b) \cdot x^{2}}}+a(y^{2}+b)(y2+b)⋅x2+a(y2+b)

22+2+(2+)

{\color{#c92786}{x^{2}y^{2}+bx^{2}}}+a(y^{2}+b)x2y2+bx2+a(y2+b)

3

Distribute

22+2+(2+)

x^{2}y^{2}+bx^{2}+{\color{#c92786}{a(y^{2}+b)}}x2y2+bx2+a(y2+b)

22+2+2+

x^{2}y^{2}+bx^{2}+{\color{#c92786}{ay^{2}+ab}}x2y2+bx2+ay2+ab

4

Rearrange terms

22+2+2+

{\color{#c92786}{x^{2}y^{2}+bx^{2}+ay^{2}+ab}}x2y2+bx2+ay2+ab

22+2+2+

Similar questions