Math, asked by Amg1, 1 year ago

Of sin^(-1)x + tan^(-1)x = pi/2 then prove that 2x^(2) + 1 = 5^(1/2) plzz solve this

Answers

Answered by ritikaverma357gmail
29
this is the answer fr this question
Attachments:

ritikaverma357gmail: ur welcome
Answered by pinquancaro
29

Answer and explanation:

Given : \sin^{-1}x+\tan^{-1}x=\frac{\pi}{2}

To prove : 2x^{2} + 1 = 5^{\frac{1}{2}} ?

Solution :

We know,

\sin^{-1}x+\tan^{-1}x=\frac{\pi}{2}

\tan^{-1}x=\frac{\pi}{2}-\sin^{-1}x

\tan^{-1}x=\cos^{-1}x

\tan^{-1}x=\tan^{-1}(\frac{\sqrt{1-x^2}}{x})

x=\frac{\sqrt{1-x^2}}{x}

x^2=\sqrt{1-x^2}

Squaring both side,

x^4=1-x^2

x^4+x^2-1=0

Using quadratic formula,

x^2=\frac{-1\pm\sqrt{1-4\cdot 1\cdot(-1)}}{2}

x^2=\frac{-1\pm\sqrt{5}}{2}

2x^2=-1\pm\sqrt{5}

2x^2+1=\sqrt{5}

Hence proved.

Similar questions