Math, asked by vismaya12, 1 year ago

of the equation
5 {x}^{2}  - 6 {x }^{2}  - 2
by the method of completing the square number​


mysticd: it is a not an equation , may be = 0 missing
mysticd: check the question again
mysticd: is it 5x² - 6x -2 = 0

Answers

Answered by Anonymous
1

Step-by-step explanation:

5 {x}^{2}  - 6x - 2 = 0 \\  \\ dividing \: 5 \: on \: both \: sides \\  \\  \frac{5 {x}^{2} }{5}  -  \frac{6x}{5}  -  \frac{2}{5}  = 0 \\  \\  {x}^{2}  -  \frac{6x}{5}  =  \frac{2}{5}  \\  \\  {x}^{2}  - 2x  \times \frac{3}{5}  =  \frac{2}{5}  \\  \\ adding \:  {( \frac{3}{5}) }^{2} on \: both \: sides \\  \\  {x}^{2}  - 2x \times  \frac{3}{5}  +  { (\frac{3}{5}) }^{2}  =  \frac{2}{5}  +   {( \frac{3}{5} )}^{2}  \\  \\  {(x -  \frac{3}{5}) }^{2}  =  \frac{2}{5}  +  \frac{9}{25}  \\  \\  {(x -  \frac{3}{5} )}^{2}  =  \frac{10 + 9}{25}  \\  \\  {(x -  \frac{3}{5} )}^{2}  =  \frac{19}{25}  \\  \\ x -  \frac{3}{5}  =  \sqrt{ \frac{19}{25} }  \\  \\ x -  \frac{3}{5}  =  \frac{ \sqrt{19} }{5}  \\  \\ on \: taking \:  +  \\  \\ x -  \frac{3}{5}  =   +  \frac{ \sqrt{19} }{5}  \\  \\ x =  \frac{ \sqrt{19} }{5}  +  \frac{3}{5}  \\  \\ x =  \frac{ \sqrt{19}  + 3}{5}  \\  \\  on \: taking \:  -  \\  \\ x -  \frac{3}{5}  =  -  \frac{ \sqrt{19} }{5}  \\  \\ x =  -  \frac{ \sqrt{19} }{5}  +  \frac{3}{5}  \\  \\ x =  \frac{ -  \sqrt{19}  + 3}{5}  \\  \\  \\  \\ here \: is \: your \: solution.

Similar questions