of x=7+4√3 then find the value of x + 1 / 2
Answers
Step-by-step explanation:
The value of x+\frac{1}{x}x+x1 = 1414
Explanation:
Given x = 7-4√3 ----(1)
i) \frac{1}{x}x1
=\frac{1}{7-4\sqrt{3}}7−431
Rationalising the denominator, we get
= \frac{7+4\sqrt{3}}{(7-4\sqrt{3})(7+4\sqrt{3})}(7−43)(7+43)7+43
= \frac{7+4\sqrt{3}}{7^{2}-\left(4\sqrt{3}\right)^{2}}72−(43)27+43
/* By algebraic identity
(a+b)(a-b) = a² - b² */
= \frac{7+4\sqrt{3}}{(49-48)}(49−48)7+43
= 7+4\sqrt{3}7+43 ---(2)
Now ,
The value of x+\frac{1}{x}x+x1
= 7-4\sqrt{3}+7+4\sqrt{3}7−43+7+43
= 1414
Therefore,.
The value of x+\frac{1}{x}x+x1 = 1414
Answer: 15 - (8 under root 3) /2.
Step-by-step explanation:
x = 7- 4(under root 3)
according to question,
x + 1/2
= 7- 4(under root 3) + 1/2
= 2[ 7- 4(under root 3)] /1 +1/2
= [14 - (8 root 3) + 1] /2
= 15 - (8 under root 3) /2.
I HOPE IT HELPS