On dividing the polynomial 4x4 - 3x3 - 42x2 - 55x -17 by the polynomial g(x) the quotient is x2 - 3x -5 and the remainder is 5x+8. Find g(x)
Answers
I hope it's help you
Plz mark me as a brainest
Answer:
The polynomial g(x) = 4x² + 9x+5
Step-by-step explanation:
Given,
When the polynomial 4x⁴- 3x³ - 42x² - 55x -17 is divided by g(x) the quotient obtained is x² - 3x -5 and the remainder 5x+8
To find,
The value of g(x)
Solution
Recall the concept
Division lemma
When a polynomial p(x) is divided by another polynomial g(x), then there exist two polynomials q(x) and r(x) such that
p(x) = g(x)q(x) +r(x) --------------(1), the degree of the polynomial r(x) is less than g(x)
Here,
p(x) = 4x⁴- 3x³ - 42x² - 55x -17
q(x) = x² - 3x -5
r(x) = 5x+8
Substituting in equation(1) we get
4x⁴- 3x³ - 42x² - 55x -17 =( x² - 3x -5 )g(x) + 5x+8
( x² - 3x -5 )g(x) = 4x⁴- 3x³ - 42x² - 55x -17 -5x -8
( x² - 3x -5 )g(x) = 4x⁴- 3x³ - 42x² - 60x -25
g(x) =
Dividing 4x⁴- 3x³ - 42x² - 60x -25 by x² - 3x -5 by long division, we get
4x² + 9x+5
x² - 3x -5) 4x⁴- 3x³ - 42x² - 60x -25
4x⁴- 12x³ -20x²
______________________
9x³ - 22x² - 60x
9x³ - 27x² - 45x
______________________
+5x² - 15x - 25
5x² - 15x - 25
_________________________
0
g(x) = = 4x² + 9x+5
The polynomial g(x) = 4x² + 9x+5
#SPJ2