Math, asked by chethan72, 1 year ago

on dividing x cube minus 3 X square + X + 2 by a polynomial G of X the quotient and remainder when x minus 2 minus 2 X + 4 respectively find gfx ​

Answers

Answered by hukam0685
22

Answer:

g(x)={x}^{2} - x  + 1 \\

Step-by-Step Solution:

To find g(x) on dividing

 {x}^{3}  - 3x + x + 2

by a polynomial g(x) the quotient and remainder when x-2 and - 2x + 4 respectively find g(x)

According to Division algorithm

p(x) = g(x)q(x) + r(x) \\  \\  {x}^{3}  - 3 {x}^{2}  + x + 2 = g(x)(x - 2) + ( - 2x  + 4) \\  \\ {x}^{3}  - 3 {x}^{2}  + x + 2 + 2x - 4 = g(x)(x - 2) \\  \\ {x}^{3}  - 3 {x}^{2} + 3x - 2 = g(x)(x - 2) \\  \\ g(x) =  \frac{{x}^{3}  - 3 {x}^{2} + 3x - 2}{x - 2}  \\  \\

Now divide to find g(x)

x - 2 \: ){x}^{3}  - 3 {x}^{2} + 3x - 2 \: ( {x}^{2} - x  + 1 \\  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  {x}^{3}  - 2 {x}^{2} \\  \:  \:  \:  \:  \: ( - ) \:  \:  \:  \:  \: ( + ) \\  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -     \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  {x}^{2}   + 3x - 2 \\  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \:  -  {x}^{2}  + 2x \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + ) \:  \:  \: ( - ) \\  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x - 2 \\  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \: x - 2 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( - ) \:  \: ( + ) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 \\  \\

Hope it helps you

Answered by Sahilkapade
11

Answer:

Step-by-step explanation:

Attachments:
Similar questions