On dividing x3 + 3x2
+ 3x +1 by x+r we get remainder:
(а) -n 3+ за 2-3n +1
(b) n - 3n 2 + 3n +1
(c) - п - 3n 2- 3n -1
(d) -n3 + 3n2 – 3n
-1
Answers
Answered by
2
Step-by-step explanation:
Prove that the expansion of (1−x
3
)
n
may be put into the form (1−x)
3n
+3nx(1−x)
3n−2
+
1.2
3n(3n−3)
x
2
(1−x)
3n−4
+…
Q2
If D
r
=
∣
∣
∣
∣
∣
∣
∣
∣
r−1
(r−1)
2
(r−1)
3
n
2n
2
3n
3
6
4n−2
3n
2
−3n
∣
∣
∣
∣
∣
∣
∣
∣
then
r=1
∑
n
D
r
=
Q3
Let △a=
∣
∣
∣
∣
∣
∣
∣
∣
a−1
(a−1)
2
(a−1)
3
n
2n
2
3n
3
6
4n−2
3n
2
−3n
∣
∣
∣
∣
∣
∣
∣
∣
. Then ∑
a−1
n
△a is equal to
Similar questions