On dividing x3-3x2+x+2,by a polynomial g(x), the quotient and remainder we're x-2 and -2x+4 respectively. Find g(x)
Answers
Answered by
3
use this relationship and solve that problem
p(x)=g(x)*q(x)+r(x)
now we want g(x) so
g(x)=p(x)-r(x)/q(x)
now substitute the values and u will get the answer
p(x)=g(x)*q(x)+r(x)
now we want g(x) so
g(x)=p(x)-r(x)/q(x)
now substitute the values and u will get the answer
Answered by
24
We know that Dividend = Divisor * Quotient + remainder.
Here,
x^3 - 3x^2 + x + 2 = g(x) * (x - 2) + (-2x + 4)
x^3 - 3x^2 + x + 2 + 2x - 4 = g(x) * (x - 2)
x^3 - 3x^2 + 3x - 2 = g(x) * (x - 2
x^2 - x + 1
-----------------------------
x - 2) x^3 - 3x^2 + 3x - 2 (
x^3 - 2x^2
-------------------------
- x^2 + 3x - 2
- x^2 + 2x
--------------------------
x - 2
x - 2
------------------------------
0.
Therefore g(x) = x^2 - x + 1
Hope this helps!
Here,
x^3 - 3x^2 + x + 2 = g(x) * (x - 2) + (-2x + 4)
x^3 - 3x^2 + x + 2 + 2x - 4 = g(x) * (x - 2)
x^3 - 3x^2 + 3x - 2 = g(x) * (x - 2
x^2 - x + 1
-----------------------------
x - 2) x^3 - 3x^2 + 3x - 2 (
x^3 - 2x^2
-------------------------
- x^2 + 3x - 2
- x^2 + 2x
--------------------------
x - 2
x - 2
------------------------------
0.
Therefore g(x) = x^2 - x + 1
Hope this helps!
siddhartharao77:
Gud luck!
Similar questions