On selling a tea set at 10% loss and a lemon set at 20% gain, a shopkeeper gains Rs. 60. If he sells tea
set at 5% gain and lemon set at 5 % loss be gains Rs. 10. Find the cost price of tea set and the lemon
set.
Answers
Answered by
55
Solution :-
Let the cost price of the tea set be Rs. 'x' and the cost price of the lemon set be Rs. 'y'.
By selling the tea set at 10 % loss and selling the lemon set at 20 % gain, the shopkeeper gains Rs. 60. Loss is denoted as negative sign.
⇒ (- x*10)/100 + (y*20)/100 = 60
⇒ - x/10 + 2y/10 = 60/1
Taking L.C.M. of the denominators and solving it.
⇒ - x + 2y = 600 ...........(1)
Now, second condition.
By selling the tea set at 5 % gain and selling lemon set at 5 % loss, the shopkeeper gains Rs. 10
⇒ (x*5)/100 - (y*5)/100 = 10
⇒ x/20 - y/20 = 10/1
Taking L.C.M. of the denominators and solving it, we get.
⇒ x - y = 200 ...........(2)
Adding (1) and (2), we get
- x + 2y = 600
x - y = 200
________________
y = 800
________________
Putting the value of y = 800 in (1), we get.
⇒ - x + 2y = 600
⇒ - x + 2*800 = 600
⇒ - x + 1600 = 600
⇒ - x = 600 - 1600
⇒ - x = -1000
⇒ x = 1000
Hence, the cost price of the tea set is Rs. 1000 and the cost price of the lemon set is Rs. 800.
Answer.
Let the cost price of the tea set be Rs. 'x' and the cost price of the lemon set be Rs. 'y'.
By selling the tea set at 10 % loss and selling the lemon set at 20 % gain, the shopkeeper gains Rs. 60. Loss is denoted as negative sign.
⇒ (- x*10)/100 + (y*20)/100 = 60
⇒ - x/10 + 2y/10 = 60/1
Taking L.C.M. of the denominators and solving it.
⇒ - x + 2y = 600 ...........(1)
Now, second condition.
By selling the tea set at 5 % gain and selling lemon set at 5 % loss, the shopkeeper gains Rs. 10
⇒ (x*5)/100 - (y*5)/100 = 10
⇒ x/20 - y/20 = 10/1
Taking L.C.M. of the denominators and solving it, we get.
⇒ x - y = 200 ...........(2)
Adding (1) and (2), we get
- x + 2y = 600
x - y = 200
________________
y = 800
________________
Putting the value of y = 800 in (1), we get.
⇒ - x + 2y = 600
⇒ - x + 2*800 = 600
⇒ - x + 1600 = 600
⇒ - x = 600 - 1600
⇒ - x = -1000
⇒ x = 1000
Hence, the cost price of the tea set is Rs. 1000 and the cost price of the lemon set is Rs. 800.
Answer.
ScientistKhushi:
Thank you very much... ^_^ It is really helpful.
Answered by
14
Let the cost price of tea set be Rs x
So the cost price of lemon set be Rs y
Case I:
(-x*10/100) + (y*20/100) =60
-x/10 + y/10 = 60
-x + 2y / 10 = 60
-x + 2y = 600 ______(i)
Case II:
(x*5/100) - (y*5/100) = 10
x/20 - y/20 = 10
x - y = 200_________(ii)
Eq (i) + Eq (ii) gives ,
-x + 2y = 600
x - y = 200
___________
y = 800
x - y =200
x - 800 = 200
x = 200 + 800
x = 1000
So , the cost price of tea set is Rs 1000 and the cost price of lemon set Rs 800 .
Similar questions
Science,
8 months ago
Social Sciences,
8 months ago
Hindi,
1 year ago
English,
1 year ago
Science,
1 year ago