Math, asked by Anonymous, 5 hours ago

One angle of a quadrilateral is
 \frac{2 \: \pi}{9}
radian and the measures of the other three angles are in the ratio 3:5:8, find
their measures in degree.

Answers

Answered by XxitzZBrainlyStarxX
75

Question:-

One angle of a quadrilateral is

 \sf \frac{2 \: \pi}{9} radian and the measures of the other three angles are in the ratio 3:5:8, find their measures in degree.

Given:-

One angle of a quadrilateral is

 \sf \frac{2 \: \pi}{9} radian and the measures of the other three angles are in the ratio 3:5:8.

To Find:-

  • measures in degree.

Solution:-

The sum of angles of a quadrilateral is 360°.

 \sf one \: of \: the \: angles \: is \: given \: to \: be( \frac{2\pi}{9} ) {}^{c}</p><p></p><p> <strong>=</strong><strong> </strong><strong>(</strong><strong>2</strong><strong>π</strong><strong>/</strong><strong>9</strong><strong> </strong><strong>×</strong><strong> </strong><strong>180</strong><strong>/</strong><strong>π</strong><strong>)</strong><strong>°</strong><strong> </strong><strong>=</strong><strong> </strong><strong>40</strong><strong>°</strong><strong>.</strong></p><p></p><p>∴ Sum of the remaining three angles is </p><p>           360° – 40° = 320°. </p><p></p><p>Since, these three angles are in the ratio of 3:5:8.</p><p></p><p>∴ Degree measures of these angles are 3k,5k,8k where k is constant. </p><p></p><p>∴ 3k + 5k + 8k = 320°.</p><p></p><p>∴ 16k = 320°</p><p></p><p>[tex] \sf∴k =  \frac{{ \cancel{32 0}}}{{ \cancel{16} }}

∴ k = 20°.

∴ The measures of three angles are

  • (3k)° = (3 × 20)° = 60°.

  • (5k)° = (5 × 20)° = 100°. and,

  • (8k)° = (8 × 20)° = 160°.

Answer:-

  • 1st angle = 60°.

  • 2nd angle = 100°. and,

  • 3rd angle = 160°.

[Refer to the above attachment for your answer]

Hope you have satisfied.

Attachments:
Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:One \: angle \: of \:  quadrilateral =  \dfrac{2\pi}{9}

and three angles are in the ratio 3 : 5 : 8

Let we assume that

The quadrilateral be ABCD such that

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &amp;\sf{\angle A =  \dfrac{2\pi}{9} = \dfrac{2 \times 180 \degree \: }{9}  = 40\degree} \\ \\  &amp;\sf{\angle B = 3x\degree}\\ \\  &amp;\sf{\angle C = 5x\degree} \\ \\ &amp;\sf{\angle D = 8x\degree} \end{cases}\end{gathered}\end{gathered}

We know,

Sum of all interior angles of a quadrilateral is 360°.

\rm \implies\:\angle A + \angle B + \angle C + \angle D = 360\degree

\rm \implies\:40\degree + 3x\degree + 5x\degree + 8x\degree = 360\degree

\rm \implies\:40\degree + 16x\degree  = 360\degree

\rm \implies\: 16x\degree  = 320\degree

\bf\implies \:x = 20\degree

Hence,

The angles of a quadrilateral ABCD are

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &amp;\sf{\angle A =   40\degree} \\ \\  &amp;\sf{\angle B = 60\degree}\\ \\  &amp;\sf{\angle C = 100\degree} \\ \\ &amp;\sf{\angle D = 160\degree} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\boxed{\tt{  {\pi}^{c} \:  =  \: 180\degree \: }}

\boxed{\tt{  \: 1 \: right \: angle \:  =  \: 90\degree \:  =  \:  {\bigg[\dfrac{\pi}{2} \bigg]}^{c} \: }}

\boxed{\tt{  \:  {1}^{c} =  \bigg[\dfrac{180}{\pi} \bigg]^{\degree}  \: }}

\boxed{\tt{ \:  1\degree =  \:   {\bigg[\dfrac{\pi}{180} \bigg]}^{c} \: }}

\boxed{\tt{ 1\degree = 60' \: }}

\boxed{\tt{ 1' = 60'' \: }}

Similar questions