Math, asked by Anonymous, 2 months ago

one angle of a triangle is 60. the other two angles are in ratio 6:4 . find the other two angles??​

Answers

Answered by Anonymous
17

Given:

One angle of a triangle is 60° and the other two angles are in the ratio of 6:4.

To find:

  • The angles of triangle.

Solution:

❍ Let the two angles of the triangle be 6x and 4x

We know that,

❍⠀⠀  { \pmb{Sum \:  of  \: the \:  angles  \: of  \: the \:  triangle \:  =  \: 180° \:  [Angle  \: sum \:  property]}}

\dashrightarrow\sf  \:  \:  \:  \: 6x + 4x + 60^\circ = 180^\circ \\\\\dashrightarrow\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 10x + 60^\circ = 180^\circ \\\\\dashrightarrow\sf  \:  \:  \:  \:  \:  \: \:  \:   \: 10x = 180^\circ - 60^\circ \\\\\dashrightarrow\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 10x = 120^\circ \\\\\dashrightarrow \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf x =  \sf\cancel\dfrac{120}{10} \\\\\dashrightarrow  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \pmb  x = \underline{\boxed{\pmb{\pink{12  {}^{ \circ} }}}} \\  \\

Hence,

  • First angle = 6x = 6 × 12 = 72°

  • Second angle = 4x = 4 × 12 = 48°

  • Given, Third angle = 60°

⠀⠀⠀

{ \therefore{ \pmb{ The \:  three  \: angles  \: of  \: the \:  given \:  triangle \:  are  \: 72°, 48° and  \: 60° respectively.}}}

\rule{300px}{.3ex}

⠀⠀⠀

 \large \: ❍ \:  \: { \underline{ \underline{ \pmb{ V E R I F I C A T I O N :}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\implies\sf \Big(First\;angle\Big) +\Big(Second\;angle\Big)+\Big(Third\;angle\Big) = Sum \: of \: the \: angles \: of \: the \: triangle\\\\\\\implies\sf 48^\circ + 72^\circ + 60^\circ = 180^\circ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:    \:  \\\\\\\implies\sf 180^\circ  = 180^\circ \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\\\\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies\underline{\boxed{\pmb{{L.H.S = R.H.S}}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⠀⠀

⠀⠀⠀

________________________________________________________________________________

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \underline{ \underline{ \pmb{{Hence\; Verified \: !}}}}}

Answered by CɛƖɛxtríα
391

★ The two other angles of the triangle are 72° and 48°.

Step-by-step explanation

Analysis -

⠀⠀⠀In the question, it has been stated that the value of one angle of triangle is 60° and the two other angles are in the ratio 6 : 4. We've been asked to find the values of the second and the third angle of the triangle.

Solution -

⠀⠀⠀Since the values of second and third angle of the triangle is given in the form of ratio, let's consider them as:

  • Second angle = 6k
  • Third angle = 4k

Here, we have to use the angle sum property of a triangle to find the value of k.

According to a triangle, the sum of its three interior angles equals 180°, i.e.,

 \twoheadrightarrow{ \sf{ \quad \angle1 +  \angle2 +  \angle3 = 180 \degree}} \\  \\

 \twoheadrightarrow{ \sf{ \quad 60\degree+ 6k + 4k = 180}} \\  \\

 \twoheadrightarrow{ \sf{ \quad 6k + 4k = 180 \degree - 60 \degree}} \\  \\

 \twoheadrightarrow{ \sf{ \quad 6k + 4k = 120 \degree}} \\  \\

 \twoheadrightarrow{ \sf{ \quad 10k = 120 \degree}} \\  \\

 \twoheadrightarrow{ \sf{ \quad k =   \bigg(\frac{12 \cancel0}{1 \cancel0} \bigg) }} \\  \\

 \twoheadrightarrow{ \quad \boxed{ \frak{ \pmb{ k = 12}}}}

As we have obtained the value of k, let's plug in its value in the expressions formed for second and third angle.

  • Second angle = 6k = 6(12) = \frak\red{\pmb{72 \degree}}
  • Third angle = 4k = 4(12) = \frak\red{\pmb{48 \degree}}

Verification -

 \twoheadrightarrow{ \sf{ \quad \angle1 +  \angle2 +  \angle3 = 180 \degree}} \\  \\

 \twoheadrightarrow{ \sf{ \quad 60 \degree + 72 \degree + 48 \degree = 180 \degree}} \\  \\

 \twoheadrightarrow{ \sf{ \quad 132 \degree + 48 \degree = 180 \degree}} \\  \\

 \twoheadrightarrow{ \sf{ \quad 180 \degree = 180 \degree}}

The value of L.H.S. is equal to the value of R.H.S. Hence, the answer obtained is correct.

Additional information -

The properties of a triangle are listed below:

  • The polygon with the least number of sides is a triangle.
  • Sum of any two sides of a triangle is greater than its third side.
  • Difference of any two sides of a triangle is less than the third side.
  • The side opposite to the largest angle is the largest and vice versa.
  • The side opposite to the smallest angle is the smallest ans vice versa.
  • One exterior angle of a triangle is equal to the sum of two opposite interior angles.
  • Sum of all exterior angles of a triangle is 360°.

___________________________________________________

Attachments:
Similar questions