one angle of a triangle is 61 degrees. the other two are in the ratio one whole 1/2 : one whole 1/3
Answers
Answered by
2
Step-by-step explanation:
In ∆ ABC,
Let ∠A = 61°
But ∠A + ∠B + ∠C = 180°
(Angles of a triangle)
⇒ 61° + ∠B + ∠C = 180°
⇒ ∠B + ∠C = 180° - 61° = 119°
But ∠B : ∠C = 1.1/2 : 1.1/3 = 3/2 : 4/3
= (9 : 8)/6 = 9 : 8
Let ∠B = 9x and ∠C = 8x,
then, 9x + 8x = 119°
⇒ 17x = 119°
⇒ x = 119°/17 = 7°
∠B = 9x = 9 × 7° = 63°
C = 8x = 8 x 7° = 56°
Answered by
57
In ∆ ABC,
Let ∠A = 61°
But ∠A + ∠B + ∠C = 180°
(Angles of a triangle)
⇒ 61° + ∠B + ∠C = 180°
⇒ ∠B + ∠C = 180° - 61° = 119°
But ∠B : ∠C = 1.1/2 : 1.1/3 = 3/2 : 4/3
= (9 : 8)/6 = 9 : 8
Let ∠B = 9x and ∠C = 8x,
then, 9x + 8x = 119°
⇒ 17x = 119°
⇒ x = 119°/17 = 7°
∠B = 9x = 9 × 7° = 63°
C = 8x = 8 x 7° = 56°
___________&___________
Attachments:
Similar questions