Chemistry, asked by bhargavisrinu8351, 1 year ago

One g equivalent of a substance is present in-
1) 0.25 mole of O2
2)0.5 mole of O2
3)1.00 mole of O2
4)8.00 mole of O2

Answers

Answered by RomeliaThurston
48

Answer: The correct answer is Option 1.

Explanation:

To calculate the equivalent weight of a substance, we use the equation:

\text{Equivalent weight}=\frac{\text{Molecular mass of the substance}}{\text{Valency}}

Molecular mass of oxygen molecule = 32

Valency of oxygen molecule = 4

Putting values in above equation, we get:

\text{Equivalent weight of oxygen molecule}=\frac{32}{4}=8g/eq.

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}   ....(1)

And, to calculate the number of gram equivalents, we use the equation:

\text{Number of gram equivalents}=\frac{\text{Given mass}}{\text{Equivalent weight}}     .....(2)

For the given options:

  • Option 1:  0.25 mole of O_2

Moles of O_2 = 0.25 mol

Molar mass of O_2 = 32 g/mol

Putting values in equation 1, we get:

0.25mol=\frac{\text{Mass of }O_2}{32g/mol}\\\\\text{Mass of }O_2=8g

Now, using equation 2, we get:

Equivalent weight of O_2 = 8 g/eq

Given mass of O_2 = 8 g

Putting values in equation 2, we get:

\text{Gram equivalents of }O_2=\frac{8g}{8g/eq.}=1eq.

  • Option 2:  0.5 mole of O_2

Moles of O_2 = 0.5 mol

Molar mass of O_2 = 32 g/mol

Putting values in equation 1, we get:

0.5mol=\frac{\text{Mass of }O_2}{32g/mol}\\\\\text{Mass of }O_2=16g

Now, using equation 2, we get:

Equivalent weight of O_2 = 8 g/eq

Given mass of O_2 = 16 g

Putting values in equation 2, we get:

\text{Gram equivalents of }O_2=\frac{16g}{8g/eq.}=2eq.

  • Option 3:  1.00 mole of O_2

Moles of O_2 = 1.00 mol

Molar mass of O_2 = 32 g/mol

Putting values in equation 1, we get:

1.00mol=\frac{\text{Mass of }O_2}{32g/mol}\\\\\text{Mass of }O_2=32g

Now, using equation 2, we get:

Equivalent weight of O_2 = 8 g/eq

Given mass of O_2 = 32 g

Putting values in equation 2, we get:

\text{Gram equivalents of }O_2=\frac{32g}{8g/eq.}=4eq.

  • Option 4:  8.00 mole of O_2

Moles of O_2 = 8.00 mol

Molar mass of O_2 = 32 g/mol

Putting values in equation 1, we get:

8.00mol=\frac{\text{Mass of }O_2}{32g/mol}\\\\\text{Mass of }O_2=256g

Now, using equation 2, we get:

Equivalent weight of O_2 = 8 g/eq

Given mass of O_2 = 256 g

Putting values in equation 2, we get:

\text{Gram equivalents of }O_2=\frac{256g}{8g/eq.}=32eq.

Hence, the correct answer is Option 1.

Similar questions