Physics, asked by anujssmishra3288, 9 months ago

One mole of an ideal gas undergoes a process
p=p01+(V/V0)2
where p0 and V0 are constants. Find the temperature of the gas when V = V0.

Answers

Answered by AditiHegde
4

One mole of an ideal gas undergoes a process P=\dfrac{P_0}{1+(\frac{V}{V_0})^2} where P0 and V0  are constants, the temperature of the gas when V=V_0 is

T=\dfrac{P_0V_0}{2R}.

  • Given,
  • P=\dfrac{P_0}{1+(\frac{V}{V_0})^2}
  • according to the ideal gas equation, we have,
  • PV=nRT
  • \dfrac{nRT}{V}=\dfrac{P_0}{1+(\frac{V}{V_0})^2}
  • Given, n=1 mole, we have,
  • \dfrac{RT}{V}=\dfrac{P_0}{1+(\frac{V}{V_0})^2}
  • at V=V_0
  • \dfrac{RT}{V_0}=\dfrac{P_0}{1+(\frac{V_0}{V_0})^2}\\\\\dfrac{RT}{V_0}=\dfrac{P_0}{1+1}
  • P_0V_0=RT(1+1)\\\\P_0V_0=2RT
  • T=\dfrac{P_0V_0}{2R}
Answered by bhuvna789456
3

The temperature of the gas T=\frac{P_{0} V_{0}}{2 R}

Explanation:

Given data in the question  

One ideal gas mole undergoes a process \mathrm{P}=\frac{P_{0}}{1+\left(\frac{V}{V_{0}}\right)^{2}}

where p_0 \text {and}  v_0  are constants .  

\mathrm{P}=\frac{P_{0}}{1+\left(\frac{V}{V_{0}}\right)^{2}}

With both sides multiplied by V in the above eqation we get

\mathrm{PV}=\frac{P_{0}V}{1+\left(\frac{V}{V_{0}}\right)^{2}}  . . . . . . . . . . . . . .  equation ( 1 )

We know that  

PV=nRT  

where n = 1

So PV=RT

Put the value of PV=RT in equation ( 1 )

Now we get

R T=\frac{P_{o} V}{1+\left(\frac{V}{V_{o}}\right)^{2}}

T=\frac{1}{R} \frac{P_{o} V}{1+\left(\frac{V}{V_{o}}\right)^{2}}

V = Vo

T=\frac{1}{R} \frac{P_{o} V_{o}}{1+\left(\frac{V_{o}}{V_{o}}\right)^{2}}

T=\frac{1}{R} \frac{P_{o} V_{o}}{\left(1+1^{2}\right)}

T=\frac{1}{R} \frac{P_{o} V_{o}}{2}

T=\frac{P_{0} V_{0}}{2 R}

Therefore for one more of an ideal gas undergoes a process  \mathrm{P}=\frac{P_{0}}{1+\left(\frac{V}{V_{0}}\right)^{2}}  where  p_0 \text {and}  v_0 are constants and the temperature of the gas is T=\frac{P_{0} V_{0}}{2 R} with condition V = V_0

Similar questions