Physics, asked by drdharapatel, 11 months ago

One mole of an ideal gas undergoes an isochoric
change from A to B and then an isobaric change
from B to C. The temperature at A and also at C
is 27°C. Find the total amount of heat absorbed
by the gas in the entire process.
(1) 150 R (2) 400 R (3) 250 R (4) 300 R​

Answers

Answered by sanjeevk28012
0

Given :

One mole of an ideal gas undergoes an isochoric  change from A to B and then an isobaric change  from B to C

The temperature at A = 27° c

The temperature at B = 27° c

To Find :

Total amount of heat absorbed

Solution :

Let The pressure at point A = P

And The volume at point A = V

Using Ideal gas equation at A

i.e  P V = n R T                where number of mole =  n = 1

Or, , P V = R T                      .............(1)

∵      From point A to point b , there is a isochoric process

So, At isochoric process , volume = constant

And Temperature at point B = T_B  = \dfrac{T}{n}              (given)

∴     At constant volume

      \dfrac{P_A}{T_A}  = \dfrac{P_B}{T_B}

Or, \dfrac{P_A}{T}  =  \dfrac{P_B}{\dfrac{T}{n} }

Or, P_A  = n P_B

And Pressure at point B = P_B  = \dfrac{P_A}{n}         ............2

Again

From point B to Point C , There is Isobaric process

So, At Isobaric process , pressure = constant

Thus    pressure at point C = pressure at point B

I.e         P_C  =  P_B  = \dfrac{P_A}{n}  

And        \dfrac{V_B}{T_B}  =  \dfrac{V_C}{T_C}

∵       T_B  = \dfrac{T}{n}

So,            \dfrac{V_B}{\dfrac{T}{n} }  =  \dfrac{V_C}{T_C}

∴          V_C  = n V_B              

Now,

As the initial and final temperature of the gas is same, thus the change in internal energy after both the processes is zero

i.e  ΔU_A_C  = 0                .............3

So,  Total work done in going from A to C

i.e     W_A_C = W_A_B  + W_B_C

               = 0 + \dfrac{P}{n}  ( V_C  - V_B )

               =  0 + \dfrac{P}{n}  ( n V  - V )

​         =  0 + P V ( 1 - \dfrac{1}{n} )

i.e   W_A_C =  P V ( 1 - \dfrac{1}{n} )                   ...........4

From The law of Thermodynamics

    Heat absorbed = change in internal energy + change in work done

i.e    ΔQ_A_C  =  ΔU_A_C  + ΔW_A_C

Or,               = 0 + P V ( 1 - \dfrac{1}{n} )                    ( from eq 3 and eq 4 )

or,       ΔQ_A_C   = P V ( 1 - \dfrac{1}{n} )    

Or,     ΔQ_A_C   = RT ( 1 - \dfrac{1}{n} )                  ( from eq 1)

Or,            ΔQ_A_C   = RT  

For   T = 27°

i.e     T = 273°  +  27°  = 300 kelvin

∴        ΔQ_A_C   = 300 R

Hence, The total amount of heat absorbed  by the gas in the entire process is 300 R   Answer

       

Similar questions