Math, asked by balirampanchal720887, 3 months ago

one of the root of equation
kx {}^{2} - 3x - 1 = 0 \: is \: \frac{1}{2} solve the following to find the value of k (x=½)

Answers

Answered by Anonymous
18

Step by step explanation:-

Given :-

For the equation kx² - 3x - 1 = 0 And Also given 1/2 is a factor that means x = 1/2

To find :-

Value of k

Solution:-

Hence It is a root If we Substitute x value It should be equal to 0 So, Substitute x = 1/2 to get value of k

kx² - 3x - 1 = 0

k( \dfrac{1}{2} ) {}^{2}  - 3( \dfrac{1}{2} ) - 1 = 0

k ( \dfrac{1}{4} ) -  \dfrac{3}{2}  - 1 = 0

 \dfrac{k}{4}  -  \dfrac{3}{2}  - 1 = 0

Taking LCM To denominator

LCM of 4,2 is 2

 \dfrac{k - 2(3) - 1(4)}{4}  = 0

 \dfrac{k - 6 - 4}{4}  = 0

k - 10 = 0(4)

k - 10 = 0

k = 10

Verification:-

Substitute value of k, x it should be equal to 0

kx² - 3x - 1 = 0

10 (1/2)² - 3 \sf\dfrac{1}{2} -1 = 0

10 \sf\dfrac{1}{4} - \sf\dfrac{3}{2}- 1 = 0

\sf\dfrac{10}{4} - \sf\dfrac{3}{2}- 1 = 0

\sf\dfrac{5}{2} - \sf\dfrac{3}{2} -1 = 0

\sf\dfrac{5-3 -2}{2} = 0

\sf\dfrac{5-5} {2}=0

\sf\dfrac{0}{2} =0

0=0

LHS = RHS

Verified

Answered by Sen0rita
50

Given : A quadratic equation kx² - 3x - 1 = 0 and one of the zero is 1/2 .

To Find : Value of k.

⠀⠀⠀⠀⠀⠀____________________

To find the value of k, firstly substitute the value of (x = 1/2) in the equation.

 \:  \:

 \mathfrak{\underline{ \bigstar \: substituting \: the \: values \:  : }}

 \sf :  \implies \: kx {}^{2}  - 3x - 1 = 0 \\  \\  \\  \sf :  \implies \: k\left( \frac{1}{2 } \right) {}^{2}  - 3 \left( \frac{1}{2}  \right) - 1 = 0 \\  \\  \\  \sf :  \implies \:  \frac{k}{4}  -  \frac{3}{2}  - 1 = 0 \\  \\  \\  \sf :  \implies \:  \frac{k - 6 - 4}{4}  = 0 \\  \\  \\  \sf :  \implies \:  \frac{k - 10}{4}  = 0 \\  \\  \\  \sf :  \implies \: k - 10 = 0 \\  \\  \\  \sf :  \implies\underline{\boxed{\mathfrak\purple{k = 10}}} \:  \bigstar \\  \\  \\  \\ \sf\therefore{\underline{Hence, \: the \: value \: of \: k \: is \:  \bold{10}.}}

⠀⠀⠀⠀⠀⠀____________________

 \:  \:

 \mathfrak{ \underline{ \bigstar \: Verification \:  : }}

 \:

\sf:\implies \: kx {}^{2}  - 3x - 1 = 0 \\  \\  \\ \sf:\implies \:10\left(  \frac{1}{2} \right) {}^{2}  - 3\left( \frac{1}{2}  \right) - 1 = 0 \\  \\  \\ \sf:\implies \frac{10}{4}  -  \frac{3}{2}  - 1 = 0 \\  \\  \\ \sf:\implies \frac{10 - 6 - 4}{10}  = 0 \\  \\  \\ \sf:\implies  \frac{10 - 10}{10}  = 0 \\  \\  \\ \sf:\implies0 = 0 \\  \\  \\  \\ \sf\therefore{\underline{Hence, verified.}}

Similar questions