Math, asked by bhatiamonika8439, 1 year ago

One of the roots of the quadratic equation ax+bc+c is twice the other,show that 2b²=9ac

Answers

Answered by UtkarshIshwar
1
Let m and n be the two roots of the quadratic equation. 
and let m = 2n

we know that
    m + n = \dfrac{-b}{a}      and   m*n = \dfrac{c}{a}

m + n = \dfrac{-b}{a}  ⇒ 3n = \dfrac{-b}{a}          ------ 1

m*h = \dfrac{c}{a}   ⇒ 2n^{2} = \dfrac{c}{a}      ------ 2

from eqn 1
  n = \dfrac{-b}{3a}    ⇒  n^{2} = \dfrac{b^{2}}{9a^{2}}

substituting it in eqn 2

\dfrac{b^{2}}{9a^{2}}  = \dfrac{c}{a}

⇒ 2b^{2} = 9ac
Similar questions