one of the two circuit has more resistant series and parallel
Answers
Answer:
series
Explanation:
your question is wrong answer is series connection
Answer:
By the end of this section, you will be able to:
Draw a circuit with resistors in parallel and in series.
Calculate the voltage drop of a current across a resistor using Ohm’s law.
Contrast the way total resistance is calculated for resistors in series and in parallel.
Explain why total resistance of a parallel circuit is less than the smallest resistance of any of the resistors in that circuit.
Calculate total resistance of a circuit that contains a mixture of resistors connected in series and in parallel.
Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow is called resistance. The simplest combinations of resistors are the series and parallel connections illustrated in Figure 1. The total resistance of a combination of resistors depends on both their individual values and how they are connected.

Figure 1. (a) A series connection of resistors. (b) A parallel connection of resistors.
Resistors in Series
When are resistors in series? Resistors are in series whenever the flow of charge, called the current, must flow through devices sequentially. For example, if current flows through a person holding a screwdriver and into the Earth, then R1 in Figure 1(a) could be the resistance of the screwdriver’s shaft, R2 the resistance of its handle, R3 the person’s body resistance, and R4 the resistance of her shoes. Figure 2 shows resistors in series connected to a voltage source. It seems reasonable that the total resistance is the sum of the individual resistances, considering that the current has to pass through each resistor in sequence. (This fact would be an advantage to a person wishing to avoid an electrical shock, who could reduce the current by wearing high-resistance rubber-soled shoes. It could be a disadvantage if one of the resistances were a faulty high-resistance cord to an appliance that would reduce the operating current.)

Figure 2. Three resistors connected in series to a battery (left) and the equivalent single or series resistance (right).
To verify that resistances in series do indeed add, let us