Math, asked by tameemtaj8792, 9 months ago

One side of a right angle triangle measure 126cm and difference in length of its hypotenuse and other side is 42cm. find the measure of its two unknown sides and calculate the area.

Answers

Answered by Anonymous
51

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

One side of a right angled triangle measure 126 cm and difference in length of it's hypotenuse and other side is 42 cm.

\bf{\red{\underline{\bf{To\:find\::}}}}

The measure of it's two unknown sides and the area.

\bf{\red{\underline{\bf{Explanation\::}}}}

In right angled Δ ABC :

We have;

  • One side (BC) of right angled Δ  = 126 cm
  • Other side of right angled Δ = 42 cm

A/q

\longrightarrow\sf{AC-AB=42...........(1)}

&

We know that formula of the Pythagoras Theorem :

\boxed{\bf{(Hypotenuse)^{2} =(Base)^{2} +(Perpendicular)^{2} }}}}

\longrightarrow\tt{(AC)^{2} =(AB)^{2} +(BC)^{2} }\\\\\\\longrightarrow\tt{(AC)^{2} -(AB)^{2} =(BC)^{2} }\\\\\\\longrightarrow\tt{(AC+AB)(AC-AB)=(126)^{2} \:\:\:[\therefore \:Using\:a^{2} -b^{2}]}\\ \\\\\longrightarrow\tt{(AC+AB)(42)=15876}\\\\\\\longrightarrow\tt{AC+AB=\cancel{\dfrac{15876}{42} }}\\\\\\\longrightarrow\tt{AC+AB=378}\\\\\\\longrightarrow\tt{AC=378-AB.......................(2)}

Putting the value of AC in equation (1),we get;

\longrightarrow\tt{378-AB-AB=42}\\\\\\\longrightarrow\tt{378-2AB=42}\\\\\\\longrightarrow\tt{-2AB=42-378}\\\\\\\longrightarrow\tt{-2AB=-336}\\\\\\\longrightarrow\tt{AB=\cancel{\dfrac{-336}{-2} }}\\\\\\\longrightarrow\tt{\pink{AB=168\:cm}}

Putting the value of AB in equation (2),we get;

\longrightarrow\tt{AC=(378-168)cm}\\\\\\\longrightarrow\tt{\pink{AC=210\:cm}}

Now;

We know that formula of the area of triangle :

\boxed{\bf{Area=\frac{1}{2} \times base\times height\:\:\:\:(sq.unit)}}}}}

  • Base (BC) = 126 cm
  • Height (AB) = 168 cm

\longrightarrow\sf{\bigg(\dfrac{1}{\cancel{2}} \times\cancel{ 126} \times 168\bigg)cm^{2} }\\\\\\\longrightarrow\sf{\big(63\times 168\big)cm^{2}}\\\\\\\longrightarrow\sf{\pink{10584\:cm^{2} }}

Thus;

The area of right angled triangle is 10584 cm² .

Attachments:

BrainlyRaaz: Amazing ❤️
Answered by Anonymous
52

Solution:

one side of right angle triangle = 126cm

other side of right angle triangle = 42cm

☞ Let AC= 126m

☞AB = a+42

By Pythagoras theoram we have,

(AB)²= (BC)²+(AC)²

→(a+42)² = (a)²+(126)²

→a²+84a+1764=a²+15876

→84a+1764=15876

→84a = 15876-1764

→84a = 14112

→a = 14112/84

→a= 168

Now ,

☞BC =a=168m

☞ AC = a+2 = 168+42= 210m

Area of ABC = 1/2×B×H

◕B = a=168

◕H = 126

1/2×168×126

→84×126

→10584m²

Verification:

By heron's formula,

here

☞s = (a+126+a+42)/2

☞s= (2a+168)/2

s= a+84

☞s= 168+84

☞s= 252

Area of = [s(s-a)(s-b)(s-c)]]

☞√[252(252-168)(252-126)(252-210)

[(252)(84)(126)(42)

☞√(126×2)(42×2)(126)(42)

☞√(126)²(2)²(42)²

☞126×42×2

☞10584m²

Attachments:

BrainlyRaaz: Perfect ❤️
Similar questions