Math, asked by yuvraj9934, 1 year ago

oneplus cos 2x + cos 4 X + Cos 6 X equal 4 cos x cos2x cos3x

Answers

Answered by Anonymous
57
\textbf{Answer}

We need to prove,
1 + cos 2x + cos 4x + cos 6x = 4.cosx.cos2x.cos3x

We will use following trigonometric identities-

\textbf{cos 2x = 2.cos^2 x - 1} -----(1)

\textbf{cos A + cos B = 2.cos (A+B)/2 cos (A-B)/2} -------(2)

\textbf{cos (-A) cos A} -------(3)

Lets comeback to the question,

LHS = 1 + cos 2x + cos 4x + cos 6x

\textbf{Using the identity (1),}

=> LHS = 1 + 2cos^2 (2x) - 1 + cos 2x + cos 6x

=> LHS = 2cos^2 (2x) + cos 2x + cos 6x

\textbf{Using the identity (2) now,}

=> LHS = 2cos^2 (2x) + 2cos (2x+6x)/2 . cos (2x-6x)/2

=> LHS = 2cos^2 (2x) + 2cos 4x . cos (-2x)

\textbf{Using the identity (3) now,}

=> LHS = 2cos^2 (2x) + 2cos 2x . cos 4x

=> LHS = 2cos 2x (cos 2x + cos 4x)

\textbf{Again using the identity (2) now,}

=> LHS = 2cos 2x {2cos (2x + 4x)/2 . cos (2x - 4x)/2}

=> LHS = 4cos2x {cos 3x . cos (-x)}

\textbf{Again using the identity (3),}

=> LHS = 4.cosx.cos2x.cos3x

\textbf{LHS = RHS}


\textbf{Hope My Answer Helped}

\textbf{Thanks}

Anonymous: Going great! xD
Anonymous: Thanks bro :)
Noah11: aryabhatta ji
Noah11: namastey
Answered by Deepsbhargav
52
 = > 1 + cos2x + cos4x + cos6x \\ \\ = > 1 + cos4x + cos2x + cos6x \\ \\ = > 2 {cos}^{2} x + 2cos( \frac{6x + 2x}{2} ).cos( \frac{6x - 2x}{2} ) \\ \\ = > 2 {cos}^{2} 2x + 2cos4x.cos( 2x) \\ \\ = > 2 {cos}^{2} 2x + 2cos4x.cos2x \\ \\ = > 2cos2x(cos2x + cos4x) \\ \\ = > 2cos2x[2cos( \frac{4x + 2x}{2} ).cos( \frac{4x - 2x}{2} )] \\ \\ = > 2cos2x.2cos3x.cocx \\ \\ = > 4cosx.cos2x.cos3x
_____________________[◢PROVED]

========================================

_-_-_-_☆BE \: \: \: \: BRAINLY☆_-_-_-_

Deepsbhargav: what
Noah11: great answer
Deepsbhargav: OK thank you
Deepsbhargav: ☺☺☺
Noah11: hm
Deepsbhargav: सधन्यवादम्!!! मेरी अजीज मित्र
Deepsbhargav: जान-ऐ-दिल!!! ये मेरा सौभाग्य होगा....
Similar questions