Math, asked by Sir100, 1 year ago

Only legends can solve question number g
Salute u if u solved it
...
(TRIGONOMETRIC RATIOS OF SUB MULTIPLES ANGLES)

(SOLVE QUESTION NO.G)

Attachments:

Answers

Answered by Anonymous
4

Answer \:  \\  \\ Given \:  \: Question \:  \:  \: Is \:  \:  \\  \\  \frac{ \sin {}^{3} ( \frac{x}{2} ) -  \cos {}^{3} ( \frac{x}{2} )  }{ \sin( \frac{x}{2} )  -  \cos( \frac{x}{2} ) }  = 1 +  \frac{1}{2}  \sin(x)  \\  \\ lhs \\  \\  \frac{ \sin {}^{3} ( \frac{x}{2} )  -  \cos {}^{3} ( \frac{x}{2} ) }{ \sin( \frac{x}{2} ) -  \cos( \frac{x}{2} )  }  \\  \\ \frac{ \sin( \frac{x}{2} ) -  \cos( \frac{x}{2} )( \sin( \frac{x}{2}  )  -  \cos( \frac{x}{2} )) {}^{2}  + 3 \sin( \frac{x}{2} ) \cos( \frac{x}{2} )    }{ \sin( \frac{x}{2} ) -  \cos( \frac{x}{2}  }  \\  \\  \frac{( \sin( \frac{x}{2} )  -  \cos( \frac{x}{2} )) {}^{2}  + 3 \sin( \frac{x}{2} )  \cos(  \frac{x}{2} )  }{   }  \\  \\   \frac{ \sin {}^{2} ( \frac{x}{2} )  +  \cos {}^{2} ( \frac{x}{2} )  - 2 \sin( \frac{x}{2} )  \cos( \frac{x}{2} )  + 3 \sin( \frac{x}{2} ) \cos( \frac{x}{2} )  }{}  \\  \\ 1 +  \sin( \frac{x}{2} )  \cos( \frac{x}{2}   )  \\  \\ 1 +   \frac{2}{2}  \frac{ \sin( \frac{x}{2} ) \cos( \frac{x}{2} )  }{}  \\  \\ 1 +  \frac{1}{2}  \sin( \frac{2x}{2} )  \\  \\ 1 +  \frac{1}{2}  \sin(x)  \\  \\ Note \:  \:  \:  \\  \\ 1) \:  \:  \alpha {}^{3}  -  \beta  {}^{3}  = \alpha  -  \beta ( \alpha  -  \beta ) {}^{2}  + 3 \alpha  \beta  \\  \\ 2) \:  \:  \:  \sin(2 \alpha )  = 2 \sin( \alpha )  \cos( \alpha )

Answered by Anonymous
3

Step-by-step explanation:

\begin{lgathered}  \\ \frac{ \sin {}^{3} ( \frac{x}{2} ) - \cos {}^{3} ( \frac{x}{2} ) }{ \sin( \frac{x}{2} ) - \cos( \frac{x}{2} ) } = 1 + \frac{1}{2} \sin(x) \\ \\ \\ LHS \\ \\ \\ \frac{ \sin {}^{3} ( \frac{x}{2} ) - \cos {}^{3} ( \frac{x}{2} ) }{ \sin( \frac{x}{2} ) - \cos( \frac{x}{2} ) } \\ \\ \\ \frac{ \sin( \frac{x}{2} ) - \cos( \frac{x}{2} )( \sin( \frac{x}{2} ) - \cos( \frac{x}{2} )) {}^{2} + 3 \sin( \frac{x}{2} ) \cos( \frac{x}{2} ) }{ \sin( \frac{x}{2} ) - \cos( \frac{x}{2} } \\ \\ \\ \frac{( \sin( \frac{x}{2} ) - \cos( \frac{x}{2} )) {}^{2} + 3 \sin( \frac{x}{2} ) \cos( \frac{x}{2} ) }{ } \\ \\ \\ \frac{ \sin {}^{2} ( \frac{x}{2} ) + \cos {}^{2} ( \frac{x}{2} ) - 2 \sin( \frac{x}{2} ) \cos( \frac{x}{2} ) + 3 \sin( \frac{x}{2} ) \cos( \frac{x}{2} ) }{} \\ \\ \\ 1 + \sin( \frac{x}{2} ) \cos( \frac{x}{2} ) \\ \\ \\ 1 + \frac{2}{2} \frac{ \sin( \frac{x}{2} ) \cos( \frac{x}{2} ) }{} \\ \\ \\ 1 + \frac{1}{2} \sin( \frac{2x}{2} ) \\ \\ \\ 1 + \frac{1}{2} \sin(x) \\ \\ \\ \end{lgathered}

Similar questions