Physics, asked by harshitasuri2004, 1 month ago

Only smart ppl can answer this so Answer this asap! ​

Attachments:

Answers

Answered by shadowsabers03
4

By superposition theorem the object can be replaced by,

  • a sphere having same size and position of the large sphere, and having volume charge density \small\text{$+\rho$}
  • a sphere having same size and position of the small sphere, and having volume charge density \small\text{$-\rho$}

as shown in the figure.

Inside the first sphere, we consider a Gaussian sphere of radius \small\text{$\sf{r\leq 2R}$} to find electric field due to it.

Volume of Gaussian sphere is,

\small\text{$\longrightarrow\sf{V=\dfrac{4}{3}\,\pi r^3}$}

And its surface area is,

\small\text{$\longrightarrow\sf{A=4\pi r^2}$}

The charge enclosed by Gaussian sphere is,

\small\text{$\longrightarrow\sf{q=\rho V}$}

\small\text{$\longrightarrow\sf{q=\dfrac{4}{3}\,\pi\rho r^3}$}

By Gauss Law the electric flux density through the Gaussian surface is,

\small\text{$\longrightarrow\displaystyle\oint\vec{\sf{E_1}}\cdot\vec{\sf{ds}}=\sf{\dfrac{q}{\epsilon_0}}$}

\small\text{$\longrightarrow\sf{E_1\cdot4\pi r^2=\dfrac{4\pi\rho r^3}{3\epsilon_0}}$}

\small\text{$\longrightarrow\sf{E_1=\dfrac{\rho r}{3\epsilon_0}}$}

Now the potential difference between A and B due to this electric field is,

\small\text{$\longrightarrow\sf{\displaystyle V_{A1}-V_{B1}=-\int\limits_{2R}^RE\,dr}$}

\small\text{$\longrightarrow\sf{\displaystyle V_{A1}-V_{B1}=-\dfrac{\rho}{3\epsilon_0}\int\limits_{2R}^Rr\,dr}$}

\small\text{$\longrightarrow\sf{V_{A1}-V_{B1}=-\dfrac{\rho}{6\epsilon_0}\left[r^2\right]_{2R}^R}$}

\small\text{$\longrightarrow\sf{V_{A1}-V_{B1}=\dfrac{\rho R^2}{2\epsilon_0}}$}

In the second sphere, A and B are diametrically opposite points wrt the center O' so the potential difference between them is zero.

\small\text{$\longrightarrow\sf{V_{A2}-V_{B2}=0}$}

Now the net potential difference is,

\small\text{$\longrightarrow\sf{V_A-V_B=\dfrac{\rho R^2}{2\epsilon_0}+0}$}

\small\text{$\longrightarrow\sf{V_A-V_B=\dfrac{1}{2}\cdot\dfrac{\rho}{\epsilon_0}\cdot R^2}$}

Given that,

  • \small\text{$\sf{\dfrac{\rho}{\epsilon_0}=16}$}
  • \small\text{$\sf{R=\dfrac{3}{2}}$}

Hence,

\small\text{$\longrightarrow\sf{V_A-V_B=\dfrac{1}{2}\cdot16\cdot\left(\dfrac{3}{2}\right)^2}$}

\small\text{$\longrightarrow\sf{\underline{\underline{V_A-V_B=18\,V}}}$}

Attachments:
Similar questions