Math, asked by Anonymous, 3 months ago

Only Stars will answer :-

PROVE THAT √2+√5 AS IRRATIONAL


We will Verify your answers if it is nice.

warning :- no spam no copy and paste no screenshot allowed.​

Answers

Answered by samirpanchal0092
2

Answer:

Let √2+√5 be a rational number.

A rational number can be written in the form of p/q where p,q are integers.

√2+√5 = p/q

Squaring on both sides,

(√2+√5)² = (p/q)²

√2²+√5²+2(√5)(√2) = p²/q²

2+5+2√10 = p²/q²

7+2√10 = p²/q²

2√10 = p²/q² - 7

√10 = (p²-7q²)/2q

p,q are integers then (p²-7q²)/2q is a rational number.

Then √10 is also a rational number.

But this contradicts the fact that √10 is an irrational number.

.°. Our supposition is false.

√2+√5 is an irrational number.

Hence proved.

haha all are stars :).. evryone has something special abilities :).

don't judge only stars can answer :).

Similar questions