Math, asked by farisshihab2006, 10 months ago

only th answer no detail answer help!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Attachments:

Answers

Answered by volleyattackersuraj1
0

Answer:

x = 2

this is it.............

Answered by amitkumar44481
4

AnsWer :

x= 1/4.

Solution :

 \tt {5}^{2x + 1}  \div 25  = 125.

 \tt \dagger \:  \:  \:  \:  \:   \dfrac{{a}^{m}}{ {a}^{n}} =  {a}^{mn}.

 \tt\dagger \:  \:  \:  \:  \:    {a}^{m} \times  {a}^{n}  =  {a}^{m + n}.

 \tt \longmapsto  \dfrac{{5}^{2x + 1}}{25}  = 125.

 \tt\longmapsto  \dfrac{{5}^{2x + 1}}{ {5}^{2} }  =  {5}^{3} .

 \tt\longmapsto  {5}^{2(2x + 1)}  =  {5}^{3} .

 \tt\longmapsto  2(2x + 1) = 3.

 \tt\longmapsto  4x + 2 = 3.

 \tt\longmapsto  4x = 1.

 \tt\longmapsto  x =  \dfrac{1}{4} .

Therefore, the value of x is 1/4.

Similar questions