Math, asked by tophansethi41, 1 day ago

OOU 8. An article is marked 50% above the cost price and it is sold at a discount of 40%. What is the gain or loss percentage ? © (A) 10% loss (B) 15% gain (C) 15% loss (D) 10% gain ଗୋଟିଏ ଦ୍ରବ୍ୟର ଲିଖିତ ମୂଲ୍ୟ ଏହାର କ୍ରୟ ମୂଲ୍ୟଠାରୁ ଶତକତା 50 ଅଧୁକ ଏବଂ ଏହାକୁ ଶତକଡା 40 ରିହାତି ଦିଆଯାଇ ବିକ୍ରି କରାଗଲା । ତେବେ ଶତକତା କେତେ ଲାଭ ବା କ୍ଷତି ହେବ ? (A) 10% କ୍ଷତି (B) 15% ଲାଭ (C) 15% କ୍ଷତି (D) 10% ଲାଭ 9. Fill in the missing nu​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

  • An article is marked 50% above the cost price.

Let assume that

  • Cost Price of an Article = Rs 100

So,

\rm \: Marked \: Price = Cost \: Price + 50\% \: of \: Cost \: Price \\

\rm \:  =  \: 100 + \dfrac{50}{100}  \times 100 \\

\rm \:  =  \: 100 + 50 \\

\rm \:  =  \: 150 \\

 \red{\rm\implies \:\boxed{ \rm{ \:Marked \: Price \:  =  \: Rs \: 150 \:  \: }}} \\

Now, We have

\rm \: Marked \: Price \:  =  \: Rs \: 150 \\

\rm \: Discount \: \% \:  =  \: 15 \: \% \\

Now, we know that

\rm \: Selling \: Price = \dfrac{(100 - Discount\%) \times Cost \: Price}{100}  \\

So, on substituting the values, we get

\rm \:  =  \: \dfrac{(100 - 40) \times 150}{100}  \\

\rm \:  =  \: \dfrac{60\times 15}{10}  \\

\rm \:  =  \: \dfrac{6\times 15}{1}  \\

\rm \:  =  \: 90  \\

 \red{\rm\implies \:\boxed{ \rm{ \:Selling \: Price \:  =  \: Rs \: 90 \:  \: }}} \\

Now, we have

\rm \: Cost \: Price \:  =  \: Rs \: 100 \\

\rm \: Selling \: Price \:  =  \: Rs \: 90 \\

\rm\implies \:Cost \: Price \:  >  \: Selling \: Price \\

\rm\implies \:There \: is \: loss \: in \: this \: transaction. \\

So,

\rm \: Loss\% =  \dfrac{Cost \: Price - Selling \: Price}{Cost \: Price} \times 100 \: \% \\

\rm \: Loss\% =  \frac{100 - 90}{100}  \times 100 \: \% \\

 \red{\rm\implies \:\boxed{ \rm{ \:Loss \: \% \:  =  \: 10 \: \% \:  \: }}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions