Math, asked by abhishekchandel55, 1 year ago

open the brackets and find the value of ab

Attachments:

abhishekchandel55: hello

Answers

Answered by sidhki1
1
Hope it will help u..
Attachments:

abhishekchandel55: thankuu dude
abhishekchandel55: ek or dun
sidhki1: hmmm
Answered by adinann
0
Identities used:

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy

 \frac{ {(6a - 5b)}^{2}  -  {(6a + 5b)}^{2} }{ab}  =  - 120 \\  \\

So,

 \frac{( {(6a)}^{2}   +  {(5b)}^{2}  - 2(6a)(5b)) - ( {(6a)}^{2} +  {(5b)}^{2}   + 2(6a)(5b))}{ab}  =  - 120 \\  \\ (36 {a}^{2}  + 25 {b}^{2}  - 30ab) -

36 {a}^{2}  + 25 {b}^{2}  - 60ab - 36 {a}^{2}   -  25 {b}^{2}   -  60ab) =  - 120ab \\  \\  \bf \: Putting \: the \: like \: terms  \\ \bf \:  together \: we \: get \\  \\ 36 {a}^{2}  - 36 {a}^{2}  + 25 {b}^{2}  - 25 {b}^{2}  - 60ab - 60ab =  - 120ab \\  \\  - 120ab =  - 120ab \\ \\ = 0
Similar questions