Math, asked by angelsvmgirlsg278, 2 days ago

OS. If two angles of a quadrilateral measure 60° and 90º and the remaining two are in the ratio 3:4. Find the remaining angles.​

Answers

Answered by AllenGPhilip
2

Answer:

90° & 120°

Step-by-step explanation:

AS WE ALL KNOW THAT SUM OF ANGLES OF A QUADRILATERAL IS 360°

  • <A+<B+<C+<D=360°
  • 60°+90°+x+y=360°
  • 150°+x+y=360°
  • x+y=360°-150°
  • x+y=210°
  • X:Y = 3:4 = 210
  • X=210×3/7 = 90°
  • Y=210×4/7 = 120°
Answered by XxToxicxX1
17

Given

  • 1st angle = 90°
  • 2nd angle = 60°
  • Ratios = 3:4

To Find

  • Find remaining angles = ?

Solution

We know that :

Sum of all angles of a quadrilateral is 360°.

Let :

3rd angle = 3x

4th angle = 4x

Solving starts :

{\leadsto{\sf{90° + 60° + 3x + 4x = 360°}}}

{\leadsto{\sf{150° + 7x = 360°}}}

{\leadsto{\sf{ 7x = 360° - 150°}}}

{\leadsto{\sf{X = {\cancel \frac{210}{7} }}}}

{\red{\underline{\bf{X = 30°}}}}

Hence :

{\dag{\blue{\mathfrak{3rd  \: angle = 3x = 3 × 30 = 90°}}}}

{\dag{\blue{\mathfrak{4th  \: angle = 4x = 4 × 30 = 120°}}}}

For Varification :

{\twoheadrightarrow{\bf{Angle 1 + Angle 2 + Angle 3 + Angle 4 = 360°}}}

{\twoheadrightarrow{\bf{90° + 60° + 3x + 4x = 360°}}}

{\twoheadrightarrow{\bf{90° + 60° + 3 × 30 + 4 × 30= 360°}}}

{\twoheadrightarrow{\bf{90° + 60° + 90 + 120= 360°}}}

{\mapsto{\pmb{\red{\sf{360° = 360° }}}}}

{\mapsto{\pmb{\red{\sf{LHS = RHS }}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\orange{\underbrace{\underline{\sf{\red{Hence ,Varified}}}}}}

_______________________

Similar questions