Math, asked by smartyaryan143, 11 months ago


Oues : If a sinΦ + b cos Φ = c, then prove that a cos Φ - b sin Φ = ± √a² + b² -c². ​

Answers

Answered by amitkumar44481
7

To Prove :

 \tt a \cos \phi - b \sin \phi =  \pm \sqrt{ {a}^{2} +  {b}^{2}  -  {c}^{2}  }

Proof :

 \tt a \sin \phi + b \cos \phi = c.

Squaring both sides, we get.

 \tt {a \sin \phi + b \cos \phi }^{2}  = {c }^{2} .

 \tt\implies {a}^{2}  { \sin}^{2}  \phi +  {b}^{2}  { \cos }^{2}  \phi + 2ab \sin \phi. \cos \phi =  {c}^{2}

 \tt\implies {a}^{2}(1 -   { \cos}^{2}  \phi) +  {b}^{2} \: (1 -   { \sin }^{2}  \phi )+ 2ab \sin \phi. \cos \phi =  {c}^{2} .

 \tt\implies {a}^{2} - {a}^{2}  { \cos}^{2}  \phi+  {b}^{2}  -   { {b}^{2}  \sin }^{2}  \phi + 2ab \sin \phi. \cos \phi =  {c}^{2} .

 \tt\implies {a}^{2}  +  {b}^{2}  -  {c}^{2}  =  {a}^{2}  \cos \phi +  {b}^{2}  \sin \phi - 2ab \sin \phi \cos \phi.

 \tt\implies a \cos \phi - b \sin \phi =  \pm \sqrt{ {a}^{2} +  {b}^{2}  -  {c}^{2}  }

  \tt{ \red{H}ance \:  \red{P}roved.}

Some information :

 \blacksquare \tt  { \sin }^{2}  \theta +  { \cos}^{2} \theta = 1.

 \blacksquare  \tt{(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab.

 \blacksquare \tt {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab.

 \blacksquare  \tt{ \sin }^{2}  \theta = 1 -  { \cos}^{2}  \theta.

Similar questions