Output of following equation is (BCD)'+A'B(CD) +AB(CD)+(AB)'CD+AB'CD+
(AB) CD +A'BCD'+ABCD'
Options
D+BC
D'+B'C.
B+D'C
B+DC
Clear
Answers
To simplify the given equation, we can use the rules of Boolean algebra.
First, we can use the identity A+A' = 1 to simplify the first and last terms:
(BCD)'+A'B(CD) = 1 +A'B(CD)
A'BCD'+ABCD' = A'(BCD)'+ABCD' = 1+ABCD'
Next, we can use the identity A+1 = 1 to simplify the third term:
AB(CD)+(AB)'CD+AB'CD+ (AB) CD = AB(CD)+(AB)'CD+AB'CD+ AB CD = AB(CD+(CD)') = AB(1) = AB
Then, we can use the identity A+A = A to simplify the second term:
A'B(CD) +AB(CD) = (A'+A)B(CD) = AB(CD)
Now, we can use the identity A+0 = A to simplify the fourth term:
A'BCD'+ABCD' = A'BCD'+ABCD'+0 = A'BCD'+ABCD'
Finally, we can use the identity A+A = A to simplify the fifth term:
AB'CD+AB CD = (AB')+(AB) CD = AB
Putting it all together, the simplified equation is:
1 +AB(CD) +AB +A'BCD'+ABCD' = D+BC
Therefore, the correct answer is D+BC.
To learn more about Boolean algebra from the given link.
https://brainly.in/question/3899228
#SPJ1