Math, asked by mrudulaparab5, 5 months ago

P (1, 1) is midpoint of segment joining A (a, 0) and B (0, b)

show that

1
/a+
1
/b
= 1

Answers

Answered by Asterinn
13

Correct question :

P (1, 1) is midpoint of line segment joining A (a, 0) and B (0, b). Show that (1/a)+(1/b) = 1

Solution :

\rm \: Coordinate  \: of  \: point \:  passing \:  through \:   midpoint \:  of  \: line \:  segment  \: joining\: points  \: (x_1 , y_1) \:  and \:  (x_2 , y_2) : \\  \\ { \bigg( \rm \:  \dfrac{x_1 +x_2 }{2} }, \rm\dfrac{y_1 +y_2 }{2}\bigg)

 \rm \longrightarrow \: (1,1) = { \bigg( \rm \:  \dfrac{a +0}{2} }, \rm\dfrac{0 +b }{2}\bigg) \\  \\ \rm \longrightarrow1= \dfrac{a +0}{2}\\  \\ \rm \longrightarrow1 \times 2 = {a +0}\\  \\ \rm \longrightarrow2  = {a +0}\\  \\ \rm \longrightarrow2  = {a } \\  \\  \\  \\  \rm \longrightarrow1= \dfrac{0 + b}{2}\\  \\ \rm \longrightarrow1 \times 2= 0 + b\\  \\ \rm \longrightarrow 2= 0 + b\\  \\ \rm \longrightarrow 2=  b

a = 2 and b = 2

Now, we have to show that (1/a)+(1/b) = 1

RHS = 1

LHS = (1/a)+(1/b)

  \rm \implies\dfrac{1}{a}  +  \dfrac{1}{b}  \\  \\  \rm put \: a = 2 \: and \: b = 2 \\  \\ \rm \implies\dfrac{1}{2}  +  \dfrac{1}{2}\\  \\ \rm \implies\dfrac{1 + 1}{2}\\  \\ \rm \implies\dfrac{2}{2}\\  \\ \rm \implies1

Therefore , RHS = LHS

hence proved

Answered by haridasdhengre5
0

Answer:

a way gwueqheh gwgeji r eqg qf u atul of Sri way ku faraxsan tahay inay ku caawiso ma tihid qofka qaata ee ma aha inaad heshid qaate ma tihid qaataha loogu talagalay mana tihid qaataha loogu talagalay mana tihid adreeskii loogu tala galay

Similar questions