Math, asked by aaryansingh29, 3 months ago

p=1000 r=2% t=2 years find amount at compounded annually and compunded half yearly​

Answers

Answered by TheFairyTale
23

GivEn :-

  • P = 1000
  • R = 2%
  • t = 2 years

To Find :-

  • amount at compounded annually
  • and compounded half yearly

Step-by-step explanation:

Amount at compounded annually :-

 \boxed{ \sf{A_{annually} = P (1 +\dfrac{R}{100} )^{n} }}

  • P = Principal
  • r = Rate of interest
  • n = Time

➤ Substituting the values,

 \implies  \sf{A_{annually} = 1000(1 +\dfrac{2}{100} )^{2} }

 \implies  \sf{A_{annually} = 1000 \times {(\dfrac{102}{100} )}^{2} }

 \implies  \sf{A_{annually} = 1000 \times  \dfrac{10404}{10000} }

 \implies  \sf{A_{annually} =  \dfrac{10404}{10}  }

 \implies  \boxed{ \red{ \bold{{A_{annually} = 1040.4}}}}

Amount at compounded half yearly :-

 \boxed{ \sf{A_{half \: yearly} = P (1 +\dfrac{R}{200} )^{2n} }}

➤ Substituting the values,

 \implies  \sf{A_{half \: yearly} = 1000 \times {(1 + \dfrac{100}{200} )}^{2 \times 2} }

 \implies  \sf{A_{half \: yearly} = 1000 \times {(1 + \dfrac{1}{2} )}^{4} }

 \implies  \sf{A_{half \: yearly} = 1000 \times {(\dfrac{3}{2} )}^{4} }

 \implies  \sf{A_{half \: yearly} = 1000 \times {\dfrac{81}{16}}}

 \implies  \sf{A_{half \: yearly} ={\dfrac{81000}{16}}}

 \implies  \boxed{ \red{ \bold{ {A_{half \: yearly} =5062.5}}}}


Anonymous: Perfect !
Anonymous: দুর্দান্ত উত্তর!
Answered by VinCus
42

Given:-

➯Principal = 1000

➯Rate of Interest = 2 %

➯Time = 2 Years

To Find:-

➯Amount at compounded Annually

➯Amount at compounded Half yearly

Solution:-

➊First Case:-

To Find the amount compounded at Annually,

➯Using formula,

➯Let time be n

 \longmapsto \:  \:  \bigstar \: { \underline{ \boxed{ \sf{ \red{Aannually \: amount \: compounded = P (1 +  \frac{R}{100}) {}^{n} }}}}}  \: \bigstar

 \longmapsto \:  \: { \underline{ \boxed{ \sf{Aannually \: amount \: compounded = 1000 (1 +  \frac{2}{100}) {}^{2} }}}}

 \longmapsto \:  \: { \underline{ \boxed{ \sf{Aannually \: amount \: compounded = 1000 \:  ( \frac{1 \times 100}{1 \times 100}  +  \frac{2}{100}) {}^{2} }}}}

 \longmapsto \:  \: { \underline{ \boxed{ \sf{Aannually \: amount \: compounded = 1000 \:  ( \frac{100}{100}  +  \frac{2}{100}) {}^{2} }}}}

 \longmapsto \:  \: { \underline{ \boxed{ \sf{Aannually \: amount \: compounded = 1000 \:  (   +  \frac{102}{100}) {}^{2} }}}}

 \longmapsto \:  \: { \underline{ \boxed{ \sf{Aannually \: amount \: compounded = 1000 \:    +  \frac{10404}{10000}}}}}

 \longmapsto \:  \: { \underline{ \boxed{ \sf{Aannually \: amount \: compounded =\frac{10404}{10}}}}}

</strong><strong> \longmapsto \:  \:  \bigstar \: { \underline</strong><strong>{</strong><strong>\</strong><strong>boxed</strong><strong>{ \boxed{ \sf{ \red{Aannually \: amount \: compounded = </strong><strong>R</strong><strong>s</strong><strong>.</strong><strong>1040.4}}</strong><strong>}</strong><strong>}}}  \: \bigstar

➋Second Case:-

To Find The amount compounded at half Annually,

➯Using formula,

➯Let time be 2n

 \longmapsto \:  \:  \bigstar \: { \underline{ \boxed{ \sf{ \red{Half \: Aannually \: amount \: compounded = P (1 +  \frac{R}{200}) {}^{2n} }}}}}  \: \bigstar

 \longmapsto \:  \:  { \underline{ \boxed{ \sf{Half \: Aannually \: amount \: compounded = 1000 \: (1 +  \frac{2}{200}) {}^{2n} }}}}

 \longmapsto \:  \:  { \underline{ \boxed{ \sf{Half \: Aannually \: amount \: compounded = 1000 \: (1 +  \frac{1}{100}) {}^{2 \times 2} }}}}

 \longmapsto \:  \:  { \underline{ \boxed{ \sf{Half \: Aannually \: amount \: compounded = 1000 \: ( \frac{1 \times 100}{1 \times 100}  +  \frac{1}{100}) {}^{2 \times 2} }}}}

 \longmapsto \:  \:  { \underline{ \boxed{ \sf{Half \: Aannually \: amount \: compounded = 1000 \: ( \frac{100}{ 100}  +  \frac{1}{100}) {}^{4} }}}}

 \longmapsto \:  \:  { \underline{ \boxed{ \sf{Half \: Aannually \: amount \: compounded = 1000 \: ( \frac{101}{ 100} ) {}^{4} }}}}

 \longmapsto \:  \:  { \underline{ \boxed{ \sf{Half \: Aannually \: amount \: compounded = 1000 \: ( \frac{104,060,401}{100,000,000} )  }}}}

 \longmapsto \:  \:  { \underline{ \boxed{ \sf{Half \: Aannually \: amount \: compounded = \frac{104,060,401}{100,000}   }}}}

 \longmapsto \:  \:  \bigstar \: { \underline{ \boxed{\boxed{ \sf{ \red{Half \: Aannually \: amount \: compounded =  Rs.1040.6}}}}}}  \: \bigstar

Hence,

The amount compounded Annually

= 1040.4

The amount compounded Half Annually

= 1040.6


Anonymous: great!
Similar questions