Math, asked by sheikhlima722, 2 days ago

P^2-√5p+1=0 then proved that, p^7+1/p^7=13√5

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm \:  {p}^{2} -  \sqrt{5}p + 1 = 0 \\

can be rewritten as

\rm \:  {p}^{2} + 1 =  \sqrt{5}p  \\

Divide both sides by p, we get

\rm \: p +  \dfrac{1}{p}  =  \sqrt{5}  -  -  - (1) \\

On squaring both sides, we get

 \rm \: {\bigg(p + \dfrac{1}{p} \bigg) }^{2}  =  {( \sqrt{5} )}^{2}  \\

\rm \:  {p}^{2} + \dfrac{1}{ {p}^{2} } + 2 \times p \times \dfrac{1}{p} = 5 \\

\color{green}[ \because \: \rm \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2}  + 2xy \: ] \\

\rm \:  {p}^{2} + \dfrac{1}{ {p}^{2} } + 2  = 5 \\

\rm \:  {p}^{2} + \dfrac{1}{ {p}^{2} } = 5 - 2 \\

\rm \:  {p}^{2} + \dfrac{1}{ {p}^{2} } = 3 \\

On squaring both sides, we get

\rm \:  \bigg({p}^{2} + \dfrac{1}{ {p}^{2} }\bigg)^{2}  =  {3}^{2}  \\

\rm \:  {p}^{4} + \dfrac{1}{ {p}^{4} } + 2 \times  {p}^{2} \times \dfrac{1}{ {p}^{2} } = 9 \\

\color{green}[ \because \: \rm \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2}  + 2xy \: ] \\

\rm \:  {p}^{4} + \dfrac{1}{ {p}^{4} } + 2 = 9 \\

\rm \:  {p}^{4} + \dfrac{1}{ {p}^{4} } = 9 - 2 \\

\color{blue}\rm\implies \:\rm \:  {p}^{4} + \dfrac{1}{ {p}^{4} } = 7 -  -  - (2) \\

Again from equation (1),

\rm \: p +  \dfrac{1}{p}  =  \sqrt{5}  \\

On cubing both sides, we get

 \rm \: {\bigg(p + \dfrac{1}{p} \bigg) }^{3}  =  {( \sqrt{5} )}^{3}  \\

\rm \:  {p}^{3} + \dfrac{1}{ {p}^{3} } + 3 \times p \times \dfrac{1}{p} \times \bigg(p + \dfrac{1}{p} \bigg) = 5 \sqrt{5} \\

\color{green}[ \because \: \rm \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3}  + 3xy(x + y) \: ] \\

\rm \:  {p}^{3} + \dfrac{1}{ {p}^{3} } + 3 \times  \sqrt{5}  = 5 \sqrt{5} \\

\color{green}\bigg[ \because \: \rm \: p + \dfrac{1}{p} =  \sqrt{5}  \: \bigg] \\

\rm \:  {p}^{3} + \dfrac{1}{ {p}^{3} } + 3\sqrt{5}  = 5 \sqrt{5} \\

\rm \:  {p}^{3} + \dfrac{1}{ {p}^{3} } = 5 \sqrt{5} - 3 \sqrt{5}  \\

\color{purple}\rm\implies \:{p}^{3} + \dfrac{1}{ {p}^{3} } = 2 \sqrt{5}  -  -  - (3) \\

On multiply equation (2) and (3), we get

\rm \: \bigg( {p}^{4}  + \dfrac{1}{ {p}^{4} } \bigg) \times \bigg( {p}^{3}  + \dfrac{1}{ {p}^{3} } \bigg) = 7 \times 2 \sqrt{5}  \\

\rm \:  {p}^{7} + p + \dfrac{1}{p} + \dfrac{1}{ {p}^{7} } = 14 \sqrt{5}  \\

\rm \:  {p}^{7} + \dfrac{1}{ {p}^{7} } + \bigg(p + \dfrac{1}{p} \bigg) = 14 \sqrt{5}  \\

\rm \:  {p}^{7} + \dfrac{1}{ {p}^{7} } +  \sqrt{5}  = 14 \sqrt{5}  \\

\color{green}\bigg[ \because \: \rm \: p + \dfrac{1}{p} =  \sqrt{5}  \: \bigg] \\

\rm \:  {p}^{7} + \dfrac{1}{ {p}^{7} } = 14 \sqrt{5}   -  \sqrt{5} \\

\color{blue}\rm\implies \:\boxed{ \rm{ \:{p}^{7} + \dfrac{1}{ {p}^{7} } = 13 \sqrt{5}  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions