Math, asked by sucharitakonar81, 9 months ago

p^(2/a)=q^(2/b)=(p^b q^a) ^c then prove abc=1.​

Answers

Answered by johnjeswin399
0

Answer:Given sum of first p, q, r term of an A.P

are a, b, c respectively.

Sum of first p terms, when A is the first term and D is the common difference

Given s  

p

​  

=a

⇒  

2

p

​  

[2A+(p−1)D]=a

Similarly s  

q

​  

=b

⇒  

2

q

​  

[2A+(q−1)D]=b

and s  

r

​  

=c

⇒  

2

r

​  

[2A+(r−1)D]=c

Now  

p

a

​  

=  

2

1

​  

[2A+(p−1)D]=A+  

2

(p−1)

​  

D

Multply by q−r, we get  

p

a

​  

(q−r)=(A+  

2

(p−1)

​  

D)(q−r) ……..(1)

Similarly  

q

b

​  

(r−p)=(A+  

2

(q−1)

​  

D)(r−p) ……..(2)

and  

r

c

​  

(p−q)=(A+  

2

(r−1)

​  

D)(p−q) ……..(3)

Adding (1),(2) and (3)

p

a

​  

(q−r)+  

q

b

​  

(r−p)+  

r

c

​  

(p−q)=A(q−r+r−p+p−q)+  

2

D

​  

[pq−pr−q+r+rq−pq−r+p+rp−rq−p−q]

Answered by dhanashri2005
0

Answer:

Prove that {a \over P}\left( {q - r} \right) + {b \over q}\left( {r ... Sum of first p terms, when A is the first term and D is the ... 2). and rc(p−q)=(A+2(r−1)D)(p−q) ……..(3)

Similar questions