Math, asked by denitec221, 7 months ago

(p+5power2)+2(p+5)
Factorize the following algebraic expression:
send full solution​​

Answers

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{\blue{\boxed{\boxed{\boxed{\pink{\underline{\underline{\mathfrak{\red{❤Answer❤}}}}}}}}}}

 \:   \red\bigstar \displaystyle \bf{(p + 5 {p}^{2} ) + 2(p + 5) = 0}...given \: equation

 \:  \ \\   \implies \displaystyle \sf{(p + 5 {p}^{2} ) + 2(p + 5) = 0}

 \:  \:  \\  \implies \displaystyle \sf{(p +  {5p}^{2} ) + 2p + 5 = 0}

 \:  \:   \\ \implies \displaystyle \sf{(5 {p}^{2}  + p + 2p + 10 )= 0}

 \:  \: \:  \\  \implies \displaystyle \sf{ {5p}^{2}  + 3p + 10 = 0}

  \:  \:  \\   \red\bullet \underline{\bf{by \: usin g \: formula \: method}}

 \:  \\  \implies \displaystyle \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \:  \:   \\ \implies \underline{\displaystyle  \bf{substiute \: the \: values \to \: a = 5 \: \: b = 3 \: and \: c = 10}}

 \:  \:  \\  \implies \displaystyle \sf{x =   \frac{ - 3 \pm \sqrt{ {3}^{2} - 4(5)(10) } }{2 \times 5} }

 \:  \:   \\  \implies \displaystyle \sf{x =  \frac{ - 3 \pm \sqrt{9 - 200} }{10} }

 \\  \:  \implies \displaystyle \sf{x =  \frac{ - 3 \pm  \sqrt{- 191}}{10} }

 \:  \: \\   \implies \displaystyle \sf{x =  \frac{ - 3 +  \sqrt{191} }{10}  \: and \: x =   \frac{ - 3 -  \sqrt{191} }{10} }

Similar questions