Math, asked by srilekhageethaveni, 1 month ago

P) A box contains 8 black and 4white balls .if 5 balls are drawn
at random find the Probability that 3 of them
are black & 2 white

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

➢ Given that bag contains

  • Number of black balls = 8

  • Number of white balls = 4

So,

  • Total number of balls in bag = 12.

Now,

➢ Number of ways in which 5 balls can be taken out randomly from 12 balls is

\rm \:  \:  =  \: ^{12}C_5

\rm \:  \:  =  \:\dfrac{12!}{5! \: (12 - 5)!}

\rm \:  \:  =  \:\dfrac{12!}{5! \: 7!}

\rm \:  \:  =  \:\dfrac{12 \times 11 \times 10 \times 9 \times 8 \times 7!}{5 \times 4 \times 3 \times 2 \times 1 \times  \: 7!}

\rm \:  \:  =  \:792

Now,

➢ Number of ways in which 3 black balls can be drawn from 8 black balls is

\rm \:  \:  =  \: ^{8}C_3

\rm \:  \:  =  \:\dfrac{8!}{3! \: (8 - 3)!}

\rm \:  \:  =  \:\dfrac{8!}{3! \: 5!}

\rm \:  \:  =  \:\dfrac{8 \times 7 \times 6 \times 5!}{3 \times 2 \times 1 \times \: 5!}

\rm \:  \:  =  \:56

Again,

➢ Number of ways in which 2 white balls can be drawn randomly from 4 white balls is

\rm \:  \:  =  \: ^{4}C_2

\rm \:  \:  =  \:\dfrac{4!}{2! \: (4 - 2)!}

\rm \:  \:  =  \:\dfrac{4 \times 3 \times 2!}{2! \: 2!}

\rm \:  \:  =  \:\dfrac{12}{ 2\times 1}

\rm \:  \:  =  \:6

So,

➢ Required probability of getting 3 black balls and 2 white balls is given by

\rm \:  \:  =  \:\dfrac{ ^8C_3 \:   \times \:   ^4C_2  }{ ^{12}C_5 }

\rm \:  \:  =  \:\dfrac{6 \times 56}{792}

\rm \:  \:  =  \:\dfrac{56}{132}

\rm \:  \:  =  \:\dfrac{14}{33}

Formula Used :-

 \boxed{ \bf{  \:  ^nC_r \:  =  \: \dfrac{n!}{r! \: (n - r)!} }}

Additional Information :-

\rm :\longmapsto\:P(A\cup \:B) = P(A) + P(B) - P(A\cap \:B)

\rm :\longmapsto\:P(A'\cap \:B) = P(B) - P(A\cap \:B)

\rm :\longmapsto\:P(A\cap \:B') = P(A) - P(A\cap \:B)

\rm :\longmapsto\:P(A'\cap \:B') = 1 - P(A\cup \:B)

\rm :\longmapsto\:P(A'\cup \:B') = 1 - P(A\cap \:B)

Similar questions