Math, asked by sanka76, 7 months ago

P and Q are the point of trisection of the diagram BD of A parallelogram ABCD. prove that angle APD = 30°​

Attachments:

Answers

Answered by nusowmya
0

Step-by-step explanation:

We know that, diagonals of a parallelogram bisect each other.

⇒  OA=OC and OB=OD

Since P and Q are point of trisection of BD

∴  BP=PQ=QD

Now, OB=OD and BP=QD

⇒  OB−BP=OD−QD

⇒  OP=OQ

In quadrilateral APCQ, we have 

OA=OC and OP=OQ

Diagonals of quadrilateral APCQ bisect each 

∴  APCQ is a parallelogram.

⇒  AP∥CQ              [ Opposite sides are parallel in parallelogram ]

Similar questions