p is any point outside the square abcd. prove that pa²-pb² = pd²-pc²
Answers
Prove that pa²-pb² = pd²-pc² where P is any point outside the square ABCD
Step-by-step explanation:
Given data:
ABCD is a square with a point P located outside the square.
To prove:
PA² – PB² = PD² – PC²
Proof:
Required formula:
Distance between two points (x₁,y₁) & (x₂,y₂) = √[(x₂-x₁)² + (y₂-y₁)²] …. (i)
Step 1:
Let the side of the square be denoted as “a” units.
So, from the figure attached below, we can conclude
Coordinates of A = (0,0)
Coordinates of B = (a,0)
Coordinates of C = (a,a)
Coordinates of D = (0,a)
And, let the coordinates of point P be (x,y).
Therefore, using the formula in eq. (i) we have,
PA² = [(x-0)² + (y-0)²] = [x² + y²] …… (ii)
PB² = [(x-a)² + (y-0)²] = [(x-a)² + y²] ….. (iii)
PD² = [(x-0)² + (y-a)²] = [x² + (y-a)²] …. (iv)
PC² = [(x-a)² + (y-a)²] ….. (v)
Step 2:
Now,
Taking L.H.S. and substituting the values from eq. (ii) & (iii),
PA² – PB²
= [x² + y²] - [(x-a)² + y²]
= [x² + y² - (x-a)² - y²]
= [x² - (x-a)²] ….. (vi)
And,
Taking R.H.S. and substituting the values from eq. (iv) & (v),
PD² – PC²
= [x² + (y-a)²] - [(x-a)²+ (y-a)²]
= [x² + (y-a)² - (x-a)² - (y-a)²]
= [x^2 - (x-a)^2] ….. (vii)
Thus,
Comparing eq. (vi) & (vii), we get
L.H.S. = R.H.S.
PA² – PB² = PD² – PC²
Hence proved
Hope this is helpful!!!