Math, asked by virus3581, 11 months ago

P is the circumcentre of an acute angled triangle ABC with circumradius R . midpoint of BC is D . show that the perimeter of ΔABC is 2R ( sin A + sin B + sinC ) .

Answers

Answered by MaheswariS
19

\textbf{Concept used:}

\textsf{Sine formula:}

\textsf{In triangle ABC,}

\mathsf{\displaystyle\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R}

\textsf{where R- circumradius}

\text{From sine fromula, we have}

a=2R\;sinA

b=2R\;sinB

c=2R\;sinC

\text{Now, Perimeter of $\triangle$ABC}

=\text{sum of all lengths of sides of $\triangle$ABC}

=a+b+c

=2R\;sinA+2R\;sinB+2R\;sinC

=2R(sinA+sinB+sinC)

\therefore\textbf{The perimeter of $\triangle$ABC is 2R(sinA+sinB+sinC)}

Similar questions