Math, asked by madhav5245, 8 days ago

p times the pth term of an AP is q times the qth term. Find the (p+q)th term.​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the progression.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

↝ pᵗʰ term is,

\rm \: a_p \:  =  \: a \:  +  \: (p - 1)d \:  \\

and

↝ qᵗʰ term is,

\rm \: a_q \:  =  \: a \:  +  \: (q - 1)d \:  \\

According to statement

\rm \: p \: a_p \:  =  \: q \: a_q \:  \\

So, on substituting the values from above, we get

\rm \: p[a + (p - 1)d] \:  =  \: q[a + (q - 1)d] \\

\rm \: ap +  d{p}^{2} - dp = aq +  {dq}^{2}  - dq \\

\rm \: ap +  d{p}^{2} - dp  -  aq  -   {dq}^{2}  +  dq = 0 \\

\rm \: (ap - aq) + ( {dp}^{2} -  {dq}^{2}) - (dp - dq) = 0 \\

\rm \: a(p - q) + d( {p}^{2} -  {q}^{2}) - d(p - q) = 0 \\

\rm \: a(p - q) + d(p - q)(p + q) - d(p - q) = 0 \\

\rm \:(p - q)[a + d(p + q) - d] = 0 \\

\rm \:a + d(p + q) - d = 0 \:  \:  \:  \{ \: as \: p \:  \ne \: q \} \\

\rm \:a + [p + q - 1]d = 0 \:  \\

\rm\implies \:a_{p + q} \:  =  \: 0 \\

\rule{190pt}{2pt}

Additional Information :-

↝ Sum of n  terms of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the progression.

n is the no. of terms.

d is the common difference.

Answered by lmpostor
2

\underline{\huge \tt{ \red{A} \blue{n} {S} \green{w} \pink{E}  \orange{r}}}

nth term of A.P :-

    \bigstar \boxed{\sf \:  a_{n} = a + (n - 1)d} \\

Given :-

  • p times of pth term = q times of qth term.

 \\  \sf \: p \{a + (p - 1)d \} = q \{ a + (q - 1)d\} \\  \sf \: p \{a + pd - d \} =  q\{a + qd - d \} \\  \sf \: pa +  {p}^{2} d - pd = qa +  {q}^{2} d - qd \\  \sf \: pa - qa +  {p}^{2}d  -  {q}^{2}d - pd + qd =0 \\  \sf \: a(p - q) + d( {p}^{2}   -  {q}^{2}  - p + q) = 0 \\  \sf \: a(p - q) + d \{ (p - q)(p + q) - p + q\} = 0 \\  \sf \: a(p - q) + d(p - q)(p + q - 1) = 0 \\

 \sf \:  dividing \: both \: sides \: by \: (p - q) \: we \: get.. \\  \\  \sf \: a + d(p + q - 1) = 0  \:  \:  \:  \:  -  -  - (i) \\

Now ,

 \sf \:  a_{p + q} = a + ( p + q - 1)d

From equation (i) ,

 \dagger \underline{ \boxed{ \sf \red{ \:  a_{p + q} = 0}}} \\

Similar questions