Math, asked by padmarohith1976, 8 months ago

p(x)=4x²‐6x+1 find alfa³+beta³​

Answers

Answered by viperisbackagain
0

Question

p(x)=4x²‐6x+1 find alfa³+beta³

Solution

sum \: of \: zeros =  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\  \alpha  +  \beta  =    \frac  {  - (- 6)}{ 4}  \\  \\  \alpha  +  \beta  =  \frac{6}{4}  \\  \\ on \: cubing \: both \: sides \\  \\  {( \alpha  +  \beta )}^{3}  = ( { \frac{6}{4} })^{3}  \\  \\  { \alpha }^{3}  +  { \beta }^{3}   + 3 \alpha  \beta ( \alpha  +  \beta ) =  { \frac{216}{64} }^{}    -  -  -  - (1)\\  \\  \\ as \: we \: know \:  \\ product \: ofzeros =  \alpha  \beta  =  \frac{1}{4}  \\  \\ by \: putting \: value \: in \:

equation \: 1 \:  \\  \\  { \alpha }^{3}  +  { \beta }^{3}  + 3  \frac{1}{4}  ( \frac{6}{4}  ) =  \frac{216}{64}  \\  \\    { \alpha }^{3}  +  { \beta }^{3}  +  \frac{18}{16}  =  \frac{216}{64}  \\  \\   { \alpha }^{3}  +   { \beta }^{3}  =  \frac{216}{64}  -  \frac{18}{16}  \\  \\  { \alpha }^{3}  +   { \beta }^{3}  =  \frac{216 - 72}{64} \\  \\ { \alpha }^{3}  +   { \beta }^{3}  =  \frac{144}{64} \\  \\ { \alpha }^{3}  +   { \beta }^{3}  =  2.25

Similar questions